36 resultados para invertebrate

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene number can be considered a pragmatic measure of biological complexity, but reliable data is scarce. Estimates for vertebrates are 50-100,000 genes per haploid genome, whereas invertebrate estimates fall below 25,000. We wished to test the hypothesis that the origin of vertebrates coincided with extensive gene creation. A prediction is that gene number will differ sharply between invertebrate and vertebrate members of the chordate phylum. A gene number estimation method requiring limited sequence sampling of genomic DNA was developed and validated by using data for Caenorhabditis elegans. Using the method, we estimated that the invertebrate chordate Ciona intestinalis has 15,500 protein-coding genes (±3,700). This number is significantly lower than gene numbers of vertebrate chordates, but similar to those of invertebrates in distantly related phyla. The data indicate that evolution of vertebrates was accompanied by a dramatic increase in protein-coding capacity of the genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have cloned a cDNA and gene from the tobacco hornworm, Manduca sexta, which is related to the vertebrate cellular retinoic acid binding proteins (CRABPs). CRABPs are members of the superfamily of lipid binding proteins (LBPs) and are thought to mediate the effects of retinoic acid (RA) on morphogenesis, differentiation, and homeostasis. This discovery of a Manduca sexta CRABP (msCRABP) demonstrates the presence of a CRABP in invertebrates. Compared with bovine/murine CRABP I, the deduced amino acid sequence of msCRABP is 71% homologous overall and 88% homologous for the ligand binding pocket. The genomic organization of msCRABP is conserved with other CRABP family members and the larger LBP superfamily. Importantly, the promoter region contains a motif that resembles an RA response element characteristic of the promoter region of most CRABPs analyzed. Three-dimensional molecular modeling based on postulated structural homology with bovine/murine CRABP I shows msCRABP has a ligand binding pocket that can accommodate RA. The existence of an invertebrate CRABP has significant evolutionary implications, suggesting CRABPs appeared during the evolution of the LBP superfamily well before vertebrate/invertebrate divergence, instead of much later in evolution in selected vertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After infection with the digenetic trematode Echinostoma paraensei, hemolymph of the snail Biomphalaria glabrata contains lectins comprised of 65-kDa subunits that precipitate polypeptides secreted by E. paraensei intramolluscan larvae. Comparable activity is lacking in hemolymph of uninfected snails. Three different cDNAs with sequence similarities to peptides derived from the 65-kDa lectins were obtained and unexpectedly found to encode fibrinogen-related proteins (FREPs). These FREPs also contained regions with sequence similarity to Ig superfamily members. B. glabrata has at least five FREP genes, three of which are expressed at increased levels after infection. Elucidation of components of the defense system of B. glabrata is relevant because this snail is an intermediate host for Schistosoma mansoni, the most widely distributed causative agent of human schistosomiasis. These results are novel in suggesting a role for invertebrate FREPs in recognition of parasite-derived molecules and also provide a model for investigating the diversity of molecules functioning in nonself-recognition in an invertebrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrate visual pigments, a glutamic acid serves as a negative counterion to the positively charged chromophore, a protonated Schiff base of retinal. When photoisomerization leads to the Schiff base deprotonating, the anionic glutamic acid becomes protonated, forming a neutral species that activates the visual cascade. We show that in octopus rhodopsin, the glutamic acid has no anionic counterpart. Thus, the “counterion” is already neutral, so no protonated form of an initially anionic group needs to be created to activate. This helps to explain another observation—that the active photoproduct of octopus rhodopsin can be formed without its Schiff base deprotonating. In this sense, the mechanism of light activation of octopus rhodopsin is simpler than for vertebrates, because it eliminates one of the steps required for vertebrate rhodopsins to achieve their activating state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile hormones (JH), a sesquiterpenoid group of ligands that regulate developmental transitions in insects, bind to the nuclear receptor ultraspiracle (USP). In fluorescence-based binding assays, USP protein binds JH III and JH III acid with specificity, adopting for each ligand a different final conformational state. JH III treatment of Saccharomyces cerevisiae expressing a LexA-USP fusion protein stabilizes an oligomeric association containing this protein, as detected by formation of a protein–DNA complex, and induces USP-dependent transcription in a reporter assay. We propose that regulation of morphogenetic transitions in invertebrates involves binding of JH or JH-like structures to USP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Catch,” a state where some invertebrate muscles sustain high tension over long periods of time with little energy expenditure (low ATP hydrolysis rate) is similar to the “latch” state of vertebrate smooth muscles. Its induction and release involve Ca2+-dependent phosphatase and cAMP-dependent protein kinase, respectively. Molecular mechanisms for catch remain obscure. Here, we describe a quantitative microscopic in vitro assay reconstituting the catch state with proteins isolated from catch muscles. Thick filaments attached to glass coverslips and pretreated with ≈10−4 M free Ca2+ and soluble muscle proteins bound fluorescently labeled native thin filaments tightly in catch at ≈10−8 M free Ca2+ in the presence of MgATP. At ≈10−4 M free Ca2+, the thin filaments moved at ≈4 μm/s. Addition of cAMP and cAMP-dependent protein kinase at ≈10−8 M free Ca2+ caused their release. Rabbit skeletal muscle F-actin filaments completely reproduced the results obtained with native thin filaments. Binding forces >500 pN/μm between thick and F-actin filaments were measured by glass microneedles, and were sufficient to explain catch tension in vivo. Synthetic filaments of purified myosin and twitchin bound F-actin in catch, showing that other components of native thick filaments such as paramyosin and catchin are not essential. The binding between synthetic thick filaments and F-actin filaments depended on phosphorylation of twitchin but not of myosin. Cosedimentation experiments showed that twitchin did not bind directly to F-actin in catch. These results show that catch is a direct actomyosin interaction regulated by twitchin phosphorylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sudden appearance of calcified skeletons among many different invertebrate taxa at the Precambrian-Cambrian transition may have required minor reorganization of preexisting secretory functions. In particular, features of the skeletal organic matrix responsible for regulating crystal growth by inhibition may be derived from mucous epithelial excretions. The latter would have prevented spontaneous calcium carbonate overcrusting of soft tissues exposed to the highly supersaturated Late Proterozoic ocean [Knoll, A. H., Fairchild, I. J. & Swett, K. (1993) Palaios 8, 512-525], a putative function for which we propose the term "anticalcification." We tested this hypothesis by comparing the serological properties of skeletal water-soluble matrices and mucous excretions of three invertebrates--the scleractinian coral Galaxea fascicularis and the bivalve molluscs Mytilus edulis and Mercenaria mercenaria. Crossreactivities recorded between muci and skeletal water-soluble matrices suggest that these different secretory products have a high degree of homology. Furthermore, freshly extracted muci of Mytilus were found to inhibit calcium carbonate precipitation in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a nonpeptide mimetic analog of an invertebrate peptide receptor. Benzethonium chloride (Bztc) is an agonist of the SchistoFLRFamide (PDVDHVFLRFamide) receptors found on locust oviducts. Bztc competitively displaces [125I-labeled Y1]SchistoFLRFamide binding to both high- and low-affinity receptors of membrane preparations. Bztc mimics the physiological effects of SchistoFLRFamide on locust oviduct, by inhibiting myogenic and induced contractions in a dose-dependent manner. Bztc is therefore recognized by the binding and activation regions of the SchistoFLRFamide receptors. This discovery provides a unique opportunity within insects to finally target a peptide receptor for the development of future pest management strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning is widely thought to result from altered potency of synapses within the neural pathways that mediate the learned behavior. Support for this belief, which pervades current physiological and computational thinking, comes especially from the analysis of cases of simple learning in invertebrates. Here, evidence is presented that in one such case, habituation of crayfish escape, the learning is more due to onset of tonic descending inhibition than to the intrinsic depression of circuit synapses to which it was previously attributed. Thus, the altered performance seems to depend at least as much on events in higher centers as on local plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integrin family of cell surface receptors is strongly conserved in higher animals, but the evolutionary history of integrins is obscure. We have identified and sequenced cDNAs encoding integrin β subunits from a coral (phylum Cnidaria) and a sponge (Porifera), indicating that these proteins existed in the earliest stages of metazoan evolution. The coral βCn1 and, especially, the sponge βPo1 sequences are the most divergent of the “β1-class” integrins and share a number of features not found in any other vertebrate or invertebrate integrins. Perhaps the greatest difference from other β subunits is found in the third and fourth repeats of the cysteine-rich stalk, where the generally conserved spacings between cysteines are highly variable, but not similar, in βCn1 and βPo1. Alternatively spliced cDNAs, containing a stop codon about midway through the full-length translated sequence, were isolated from the sponge library. These cDNAs appear to define a boundary between functional domains, as they would encode a protein that includes the globular ligand-binding head but would be missing the stalk, transmembrane, and cytoplasmic domains. These and other sequence comparisons with vertebrate integrins are discussed with respect to models of integrin structure and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have cloned and sequenced two defensins, Smd1 and Smd2, from anterior midgut tissue of the blood-sucking fly Stomoxys calcitrans. The DNA and N-terminal protein sequences suggest both are produced as prepropeptides. Smd1 differs from the classic defensin pattern in having an unusual six-amino acid-long N-terminal sequence. Both Smd1 and Smd2 have lower pI points and charge than insect defensins derived from fat body/hemocytes. Northern analysis shows both of these defensin molecules are tissue specific; both are produced by the anterior midgut tissue and, unlike the other insect defensins reported to date, neither appears to be expressed in fat body or hemocytes. Northern analysis also shows that mRNAs for both defensins are constitutively produced in the anterior midgut tissues and that these transcripts are up-regulated in response to sterile as well as a lipopolysaccharide-containing blood meal. However, anti-Gram-negative biological activity in the midgut is substantially enhanced by lipopolysaccharide. These findings suggest that the insect midgut has its own tissue-specific immune mechanisms and that this invertebrate epithelium is, like several vertebrate epithelia, protected by specific antibacterial peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three novel families of transposable elements, Wukong, Wujin, and Wuneng, are described in the yellow fever mosquito, Aedes aegypti. Their copy numbers range from 2,100 to 3,000 per haploid genome. There are high degrees of sequence similarity within each family, and many structural but not sequence similarities between families. The common structural characteristics include small size, no coding potential, terminal inverted repeats, potential to form a stable secondary structure, A+T richness, and putative 2- to 4-bp A+T-biased specific target sites. Evidence of previous mobility is presented for the Wukong elements. Elements of these three families are associated with 7 of 16 fully or partially sequenced Ae. aegypti genes. Characteristics of these mosquito elements indicate strong similarities to the miniature inverted-repeat transposable elements (MITEs) recently found to be associated with plant genes. MITE-like elements have also been reported in two species of Xenopus and in Homo sapiens. This characterization of multiple families of highly repetitive MITE-like elements in an invertebrate extends the range of these elements in eukaryotic genomes. A hypothesis is presented relating genome size and organization to the presence of highly reiterated MITE families. The association of MITE-like elements with Ae. aegypti genes shows the same bias toward noncoding regions as in plants. This association has potentially important implications for the evolution of gene regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tyrosine phosphorylation has been shown to be an important modulator of synaptic transmission in both vertebrates and invertebrates. Such findings hint toward the existence of extracellular ligands capable of activating this widely represented signaling mechanism at or close to the synapse. Examples of such ligands are the peptide growth factors which, on binding, activate receptor tyrosine kinases. To gain insight into the physiological consequences of receptor tyrosine kinase activation in squid giant synapse, a series of growth factors was tested in this preparation. Electrophysiological, pharmacological, and biochemical analysis demonstrated that nerve growth factor (NGF) triggers an acute and specific reduction of the postsynaptic potential amplitude, without affecting the presynaptic spike generation or presynaptic calcium current. The NGF target is localized at a postsynaptic site and involves a new TrkA-like receptor. The squid receptor crossreacts with antibodies generated against mammalian TrkA, is tyrosine phosphorylated in response to NGF stimulation, and is blocked by specific pharmacological inhibitors. The modulation described emphasizes the important role of growth factors on invertebrate synaptic transmission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear hormone receptors comprise a characteristic family of transcription factors found in vertebrates, insects and nematodes. Here we show by cDNA and gene cloning that a Cnidarian, Tripedalia cystophora, possesses a retinoid receptor (jRXR) with remarkable homology to vertebrate retinoic acid X receptors (RXRs). Like vertebrate RXRs, jRXR binds 9-cis retinoic acid (Kd = 4 × 10−10 M) and binds to the DNA sequence, PuGGTCA as a monomer in vitro. jRXR also heterodimerizes with Xenopus TR beta on a thyroid responsive element of a direct repeat separated by 4 bp. A jRXR binding half-site capable of interacting with (His6)jRXR fusion protein was identified in the promoters of three T. cystophora crystallin genes that are expressed highly in the eye lens of this jellyfish. Because crystallin gene expression is regulated by retionoid signaling in vertebrates, the jellyfish crystallin genes are candidate in vivo targets for jRXR. Finally, an antibody prepared against (His6)jRXR showed that full-length jRXR is expressed at all developmental stages of T. cystophora except the ephydra, where a smaller form replaces is. These data show that Cnidaria, a diploblastic phylum ancestral to the triploblastic invertebrate and subsequent vertebrate lineages, already have an RXR suggesting that RXR is an early component of the regulatory mechanisms of metazoa.