4 resultados para inter-group contact
em National Center for Biotechnology Information - NCBI
Resumo:
We have investigated the role of 2′-OH groups in the specific interaction between the acceptor stem of Escherichia coli tRNACys and cysteine-tRNA synthetase. This interaction provides for the high aminoacylation specificity observed for cysteine-tRNA synthetase. A synthetic RNA microhelix that recapitulates the sequence of the acceptor stem was used as a substrate and variants containing systematic replacement of the 2′-OH by 2′-deoxy or 2′-O-methyl groups were tested. Except for position U73, all substitutions had little effect on aminoacylation. Interestingly, the deoxy substitution at position U73 had no effect on aminoacylation, but the 2′-O-methyl substitution decreased aminoacylation by 10-fold and addition of the even bulkier 2′-O-propyl group decreased aminoacylation by another 2-fold. The lack of an effect by the deoxy substitution suggests that the hydrogen bonding potential of the 2′-OH at position U73 is unimportant for aminoacylation. The decrease in activity upon alkyl substitution suggests that the 2′-OH group instead provides a monitor of the steric environment during the RNA–synthetase interaction. The steric role was confirmed in the context of a reconstituted tRNA and is consistent with the observation that the U73 base is the single most important determinant for aminoacylation and therefore is a site that is likely to be in close contact with cysteine-tRNA synthetase. A steric role is supported by an NMR-based structural model of the acceptor stem, together with biochemical studies of a closely related microhelix. This role suggests that the U73 binding site for cysteine-tRNA synthetase is sterically optimized to accommodate a 2′-OH group in the backbone, but that the hydroxyl group itself is not involved in specific hydrogen bonding interactions.
Resumo:
Interaction of light-activated rhodopsin with transducin (T) is the first event in visual signal transduction. We use covalent crosslinking approaches to map the contact sites in interaction between the two proteins. Here we use a photoactivatable reagent, N-[(2-pyridyldithio)-ethyl], 4-azido salicylamide. The reagent is attached to the SH group of cytoplasmic monocysteine rhodopsin mutants by a disulfide-exchange reaction with the pyridylthio group, and the derivatized rhodopsin then is complexed with T by illumination at λ >495 nm. Subsequent irradiation of the complex at λ310 nm generates covalent crosslinks between the two proteins. Crosslinking was demonstrated between T and a number of single cysteine rhodopsin mutants. However, sites of crosslinks were investigated in detail only between T and the rhodopsin mutant S240C (cytoplasmic loop V-VI). Crosslinking occurred predominantly with Tα. For identification of the sites of crosslinks in Tα, the strategy used involved: (i) derivatization of all of the free cysteines in the crosslinked proteins with N-ethylmaleimide; (ii) reduction of the disulfide bond linking the two proteins and isolation of all of the Tα species carrying the crosslinked moiety with a free SH group; (iii) adduct formation of the latter with the N-maleimide moiety of the reagent, maleimido-butyryl-biocytin, containing a biotinyl group; (iv) trypsin degradation of the resulting Tα derivatives and isolation of Tα peptides carrying maleimido-butyryl-biocytin by avidin-agarose chromatography; and (v) identification of the isolated peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. We found that crosslinking occurred mainly to two C-terminal peptides in Tα containing the amino acid sequences 310–313 and 342–345.
Resumo:
Contact sites in interaction between light-activated rhodopsin and transducin (T) have been investigated by using a chemically preactivated crosslinking reagent, N-succinimidyl 3-(2-pyridyldithio)propionate. The 3 propionyl-N-succinimidyl group in the reagent was attached by a disulfide exchange reaction to rhodopsin mutants containing single reactive cysteine groups in the cytoplasmic loops. Complex formation between the derivatized rhodopsin mutants and T was carried out by illumination at λ > 495 nm. Subsequent increase in pH (from 6 to 7.5 or higher) of the complex resulted in crosslinking of rhodopsin to the Tα subunit. Crosslinking to Tα was demonstrated for the rhodopsin mutants K141C, S240C, and K248C, and the crosslinked sites in Tα were identified for the rhodopsin mutant S240C. The peptides carrying the crosslinking moiety were isolated from the trypsin-digested peptide mixture, and their identification was carried out by matrix-assisted laser desorption ionization–time of flight mass spectrometry. The main site of crosslinking is within the peptide sequence, Leu-19–Arg-28 at the N-terminal region of Tα. The total results show that both the N and the C termini of Tα are in close vicinity to the third cytoplasmic loop of rhodopsin in the complex between rhodopsin and T.
Resumo:
Poly(4-vinyl-N-alkylpyridinium bromide) was covalently attached to glass slides to create a surface that kills airborne bacteria on contact. The antibacterial properties were assessed by spraying aqueous suspensions of bacterial cells on the surface, followed by air drying and counting the number of cells remaining viable (i.e., capable of growing colonies). Amino glass slides were acylated with acryloyl chloride, copolymerized with 4-vinylpyridine, and N-alkylated with different alkyl bromides (from propyl to hexadecyl). The resultant surfaces, depending on the alkyl group, were able to kill up to 94 ± 4% of Staphylococcus aureus cells sprayed on them. A surface alternatively created by attaching poly(4-vinylpyridine) to a glass slide and alkylating it with hexyl bromide killed 94 ± 3% of the deposited S. aureus cells. On surfaces modified with N-hexylated poly(4-vinylpyridine), the numbers of viable cells of another Gram-positive bacterium, Staphylococcus epidermidis, as well as of the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, dropped more than 100-fold compared with the original amino glass. In contrast, the number of viable bacterial cells did not decline significantly after spraying on such common materials as ceramics, plastics, metals, and wood.