24 resultados para integration of care
em National Center for Biotechnology Information - NCBI
Resumo:
Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.
Resumo:
Premature termination of protein synthesis by nonsense mutations is at the molecular origin of a number of inherited disorders in the family of G protein-coupled seven-helix receptor proteins. To understand how such truncated polypeptides are processed by the cell, we have carried out COS-1 cell expression studies of mutants of bovine rhodopsin truncated at the first 1, 1.5, 2, 3, or 5 transmembrane segments (TMS) of the seven present in wild-type opsin. Our experiments show that successful completion of different stages in the cellular processing of the protein [membrane insertion, N-linked glycosylation, stability to proteolytic degradation, and transport from the endoplasmic reticulum (ER) membrane] requires progressively longer lengths of the polypeptide chain. Thus, none of the truncations affected the ability of the polypeptides to be integral membrane proteins. C-terminal truncations that generated polypeptides with fewer than two TMS resulted in misorientation and prevented glycosylation at the N terminus, whereas truncations that generated polypeptides with fewer than five TMS greatly destabilized the protein. However, all of the truncations prevented exit of the polypeptide from the ER. We conclude that during the biogenesis of rhodopsin, proper integration into the ER membrane occurs only after the synthesis of at least two TMS is completed. Synthesis of the next three TMS confers a gradual increase in stability, whereas the presence of more than five TMS is necessary for exit from the ER.
Resumo:
We describe a novel plant transformation technique, termed “agrolistic,” that combines the advantages of the Agrobacterium transformation system with the high efficiency of biolistic DNA delivery. Agrolistic transformation allows integration of the gene of interest without undesired vector sequence. The virulence genes virD1 and virD2 from Agrobacterium tumefaciens that are required in bacteria for excision of T-strands from the tumor-inducing plasmid were placed under the control of the CaMV35S promoter and codelivered with a target plasmid containing border sequences flanking the gene of interest. Transient expression assays in tobacco and in maize cells indicated that vir gene products caused strand-specific nicking in planta at the right border sequence, similar to VirD1/VirD2-catalyzed T-strand excision observed in Agrobacterium. Agrolistically transformed tobacco calli were obtained after codelivery of virD1 and virD2 genes together with a selectable marker flanked by border sequences. Some inserts exhibited right junctions with plant DNA that corresponded precisely to the sequence expected for T-DNA (portion of the tumor-inducing plasmid that is transferred to plant cells) insertion events. We designate these as “agrolistic” inserts, as distinguished from “biolistic” inserts. Both types of inserts were found in some transformed lines. The frequency of agrolistic inserts was 20% that of biolistic inserts.
Resumo:
Agrobacterium tumefaciens can transfer part of its Ti plasmid, the T-DNA, to plant cells where it integrates into the nuclear genome via illegitimate recombination. Integration of the T-DNA results in small deletions of the plant target DNA, and may lead to truncation of the T-DNA borders and the production of filler DNA. We showed previously that T-DNA can also be transferred from A. tumefaciens to Saccharomyces cerevisiae and integrates into the yeast genome via homologous recombination. We show here that when the T-DNA lacks homology with the S. cerevisiae genome, it integrates at random positions via illegitimate recombination. From 11 lines the integrated T-DNA was cloned back to Escherichia coli along with yeast flanking sequences. The T-DNA borders and yeast DNA flanking the T-DNA were sequenced and characterized. It was found that T-DNA integration had resulted in target DNA deletions and sometimes T-DNA truncations or filler DNA formation. Therefore, the molecular mechanism of illegitimate recombination by which T-DNA integrates in higher and lower eukaryotes seems conserved.
Resumo:
Bacterial integration host factors (IHFs) play central roles in the cellular processes of recombination, DNA replication, transcription, and bacterial pathogenesis. We describe here a novel mycobacterial IHF (mIHF) of Mycobacterium smegmatis and Mycobacterium tuberculosis that stimulates integration of mycobacteriophage L5. mIHF is the product of a single gene and is unrelated at the sequence level to other integration host factors. By itself, mIHF does not bind preferentially to attP DNA, although it significantly alters the pattern of integrase (Int) binding, promoting the formation of specific integrase–mIHF–attP intasome complexes.
Resumo:
The transcription of CAB genes, encoding the chlorophyll a/b-binding proteins, is rapidly induced in dark-grown Arabidopsis seedlings following a light pulse. The transient induction is followed by several cycles of a circadian rhythm. Seedlings transferred to continuous light are known to exhibit a robust circadian rhythm of CAB expression. The precise waveform of CAB expression in light–dark cycles, however, reflects a regulatory network that integrates information from photoreceptors, from the circadian clock and possibly from a developmental program. We have used the luciferase reporter system to investigate CAB expression with high time resolution. We demonstrate that CAB expression in light-grown plants exhibits a transient induction following light onset, similar to the response in dark-grown seedlings. The circadian rhythm modulates the magnitude and the kinetics of the response to light, such that the CAB promoter is not light responsive during the subjective night. A signaling pathway from the circadian oscillator must therefore antagonize the phototransduction pathways controlling the CAB promoter. We have further demonstrated that the phase of maximal CAB expression is delayed in light–dark cycles with long photoperiods, due to the entrainment of the circadian oscillator. Under short photoperiods, this pattern of entrainment ensures that dawn coincides with a phase of high light responsiveness, whereas under long photoperiods, the light response at dawn is reduced.
Resumo:
Cytosolic proteolysis is carried out predominantly by the proteasome. We show that a large oligopeptidase, tripeptidylpeptidase II (TPPII), can compensate for compromised proteasome activity. Overexpression of TPPII is sufficient to prevent accumulation of polyubiquitinated proteins and allows survival of EL-4 cells at otherwise lethal concentrations of the covalent proteasome inhibitor NLVS (NIP-leu-leu-leu-vinylsulfone). Elevated TPPII activity also partially restores peptide loading of MHC molecules. Purified proteasomes from adapted cells lack the chymotryptic-like activity, but still degrade longer peptide substrates via residual activity of their Z subunits. However, growth of adapted cells depends on induction of other proteolytic activities. Therefore, cytosolic oligopeptidases such as TPPII normalize rates of intracellular protein breakdown required for normal cellular function and viability.
Resumo:
Objectives: To describe the proportion of patients attending an accident and emergency department for whom blood analysis at the point of care brought about a change in management; to measure the extent to which point of care testing resulted in differences in clinical outcome for these patients when compared with patients whose samples were tested by the hospital laboratory.
Resumo:
Objective: To examine the prevalence, nature, causes, and consequences of suboptimal care before admission to intensive care units, and to suggest possible solutions.
Resumo:
Objectives: To describe utilisation of general practitioners by elderly people resident in communal establishments; to examine variations in general practitioner utilisation and estimate the likely impact of the “downsizing” of long stay provision in NHS hospitals.
Resumo:
The Internet has created new opportunities for librarians to develop information systems that are readily accessible at the point of care. This paper describes the multiyear process used to justify, fund, design, develop, promote, and evaluate a rehabilitation prototype of a point-of-care, team-based information system (PoinTIS) and train health care providers to use this prototype for their spinal cord injury and traumatic brain injury patient care and education activities. PoinTIS is a successful model for librarians in the twenty-first century to serve as publishers of information created or used by their parent organizations and to respond to the opportunities for information dissemination provided by recent technological advances.