56 resultados para inhibitory activity

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melanoma inhibitory activity (MIA) is a 12-kDa protein that is secreted from both chondrocytes and malignant melanoma cells. MIA has been reported to have effects on cell growth and adhesion, and it may play a role in melanoma metastasis and cartilage development. We report the 1.4-Å crystal structure of human MIA, which consists of an Src homology 3 (SH3)-like domain with N- and C-terminal extensions of about 20 aa each. The N- and C-terminal extensions add additional structural elements to the SH3 domain, forming a previously undescribed fold. MIA is a representative of a recently identified family of proteins and is the first structure of a secreted protein with an SH3 subdomain. The structure also suggests a likely protein interaction site and suggests that, unlike conventional SH3 domains, MIA does not recognize polyproline helices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the crystal structure of Thermus aquaticus DNA polymerase I in complex with an inhibitory Fab, TP7, directed against the native enzyme. Some of the residues present in a helical conformation in the native enzyme have adopted a γ turn conformation in the complex. Taken together, structural information that describes alteration of helical structure and solution studies that demonstrate the ability of TP7 to inhibit 100% of the polymerase activity of the enzyme suggest that the change in conformation is probably caused by trapping of an intermediate in the helix-coil dynamics of this helix by the Fab. Antibodies directed against modified helices in proteins have long been anticipated. The present structure provides direct crystallographic evidence. The Fab binds within the DNA binding cleft of the polymerase domain, interacting with several residues that are used by the enzyme in binding the primer:template complex. This result unequivocally corroborates inferences drawn from binding experiments and modeling calculations that the inhibitory activity of this Fab is directly attributable to its interference with DNA binding by the polymerase domain of the enzyme. The combination of interactions made by the Fab residues in both the polymerase and the vestigial editing nuclease domain of the enzyme reveal the structural basis of its preference for binding to DNA polymerases of the Thermus species. The orientation of the structure-specific nuclease domain with respect to the polymerase domain is significantly different from that seen in other structures of this polymerase. This reorientation does not appear to be antibody-induced and implies remarkably high relative mobility between these two domains.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To determine the mechanism of action responsible for the in vivo antitumor activity of a phosphorothioate antisense inhibitor targeted against human C-raf kinase (ISIS 5132, also known as CGP69846A), a series of mismatched phosphorothioate analogs of ISIS 5132 or CGP69846A were synthesized and characterized with respect to hybridization affinity, inhibitory effects on C-raf gene expression in vitro, and antitumor activity in vivo. Incorporation of a single mismatch into the sequence of ISIS 5132 or CGP69846A resulted in reduced hybridization affinity toward C-raf RNA sequences and reduced inhibitory activity against C-raf expression in vitro and tumor growth in vivo. Moreover, incorporation of additional mismatches resulted in further loss of in vitro and in vivo activity in a manner that correlated well with a hybridization-based (i.e., antisense) mechanism of action. These results provide important experimental evidence supporting an antisense mechanism of action underlying the in vivo antitumor activity displayed by ISIS 5132 or CGP69846A.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The neural cell adhesion molecule (N-CAM) is expressed on the surface of astrocytes, where its homophilic binding leads to the activation of the transcription factor NF-κB. Transfection of astrocytes with a construct encompassing the transmembrane region and the cytoplasmic domain of N-CAM (designated Tm-Cyto, amino acids 685–839 in the full-length molecule) inhibited this activation up to 40%, and inhibited N-CAM-induced translocation of NF-κB to the nucleus. N-CAM also activated NF-κB in astrocytes from N-CAM knockout mice, presumably through binding to a heterophile. This activation, however, was not blocked by Tm-Cyto expression, indicating that the inhibitory effect of the Tm-Cyto construct is specific for cell surface N-CAM. Deletions and point mutations of the cytoplasmic portion of the Tm-Cyto construct indicated that the region between amino acids 780 and 800 were essential for inhibitory activity. This region contains four threonines (788, 793, 794, and 797). Mutation to alanine of T788, T794, or T797, but not T793, abolished inhibitory activity, as did mutation of T788 or T797 to aspartic acid. A Tm-Cyto construct with T794 mutated to aspartic acid retained inhibitory activity but did not itself induce a constitutive NF-κB response. This result suggests that phosphorylation of T794 may be necessary but is not the triggering event. Overall, these findings define a short segment of the N-CAM cytoplasmic domain that is critical for N-CAM-induced activation of NF-κB and may be important in other N-CAM-mediated signaling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Sma and Mad related (Smad) family proteins are critical mediators of the transforming growth factor-β (TGF-β) superfamily signaling. After TGF-β-mediated phosphorylation and association with Smad4, Smad2 moves to the nucleus and activates expression of specific genes through cooperative interactions with DNA-binding proteins, including members of the winged-helix family of transcription factors, forkhead activin signal transducer (FAST)-1 and FAST2. TGF-β has also been described to activate other signaling pathways, such as the c-Jun N-terminal Kinase (JNK) pathway. Here, we show that activation of JNK cascade blocked the ability of Smad2 to mediate TGF-β-dependent activation of the FAST proteins. This inhibitory activity is mediated through the transcriptional factor c-Jun, which enhances the association of Smad2 with the nuclear transcriptional corepressor TG-interacting factor (TGIF), thereby interfering with the assembly of Smad2 and the coactivator p300 in response to TGF-β signaling. Interestingly, c-Jun directly binds to the nuclear transcriptional corepressor TGIF and is required for TGIF-mediated repression of Smad2 transcriptional activity. These studies thus reveal a mechanism for suppression of Smad2 signaling pathway by JNK cascade through transcriptional repression.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Production of infectious human immunodeficiency virus (HIV) requires proper polyprotein processing by the dimeric viral protease. The trans-dominant inhibitory activity of a defective protease monomer with the active site Asp-25 changed to Asn was measured by transient transfection. A proviral plasmid that included the drug-selectable Escherichia coli gpt gene was used to deliver the wild-type (wt) or mutant proteases to cultured cells. Coexpression of the wt proviral DNA (HIV-gpt) with increasing amounts of the mutant proviral DNA (HIV-gpt D25N) results in a concomitant decrease in proteolytic activity monitored by in vivo viral polyprotein processing. The viral particles resulting from inactivation of the protease were mostly immature, consisting predominantly of unprocessed p55gag and p160gag-pol polyproteins. In the presence of HIV-1 gp160 env, the number of secreted noninfectious particles correlated with the presence of increasing amounts of the defective protease. Greater than 97% reduction in infectivity was observed at a 1:6 ratio of wt to defective protease DNA. This provides an estimate of the level of inhibition required for effectively preventing virion processing. Stable expression of the defective protease in monkey cells reduced the yield of infectious particles from these cells by 90% upon transfection with the wt proviral DNA. These results show that defective subunits of the viral protease exert a trans-dominant inhibitory effect resulting from the formation of catalytically compromised heterodimers in vivo, ultimately yielding noninfectious viral particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bryostatins are a unique family of emerging cancer chemotherapeutic candidates isolated from marine bryozoa. Although the biochemical basis for their therapeutic activity is not known, these macrolactones exhibit high affinities for protein kinase C (PKC) isozymes, compete for the phorbol ester binding site on PKC, and stimulate kinase activity in vitro and in vivo. Unlike the phorbol esters, they are not first-stage tumor promoters. The design, computer modeling, NMR solution structure, PKC binding, and functional assays of a unique class of synthetic bryostatin analogs are described. These analogs (7b, 7c, and 8) retain the putative recognition domain of the bryostatins but are simplified through deletions and modifications in the C4-C14 spacer domain. Computer modeling of an analog prototype (7a) indicates that it exists preferentially in two distinct conformational classes, one in close agreement with the crystal structure of bryostatin 1. The solution structure of synthetic analog 7c was determined by NMR spectroscopy and found to be very similar to the previously reported structures of bryostatins 1 and 10. Analogs 7b, 7c, and 8 bound strongly to PKC isozymes with Ki = 297, 3.4, and 8.3 nM, respectively. Control 7d, like the corresponding bryostatin derivative, exhibited weak PKC affinity, as did the derivative, 9, lacking the spacer domain. Like bryostatin, acetal 7c exhibited significant levels of in vitro growth inhibitory activity (1.8–170 ng/ml) against several human cancer cell lines, providing an important step toward the development of simplified, synthetically accessible analogs of the bryostatins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G protein-coupled receptors, which are enzymatically cleaved to expose a truncated extracellular N terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease α-thrombin, is expressed in various tissues (e.g., platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. We have discovered a series of potent peptide-mimetic antagonists of PAR-1, exemplified by RWJ-56110. Spatial relationships between important functional groups of the PAR-1 agonist peptide epitope SFLLRN were employed to design and synthesize candidate ligands with appropriate groups attached to a rigid molecular scaffold. Prototype RWJ-53052 was identified and optimized via solid-phase parallel synthesis of chemical libraries. RWJ-56110 emerged as a potent, selective PAR-1 antagonist, devoid of PAR-1 agonist and thrombin inhibitory activity. It binds to PAR-1, interferes with PAR-1 calcium mobilization and cellular function (platelet aggregation; cell proliferation), and has no effect on PAR-2, PAR-3, or PAR-4. By flow cytometry, RWJ-56110 was confirmed as a direct inhibitor of PAR-1 activation and internalization, without affecting N-terminal cleavage. At high concentrations of α-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, albeit not in human platelets; whereas, at high concentrations of SFLLRN-NH2, RWJ-56110 blocked activation responses in both cell types. Thus, thrombin activates human platelets independently of PAR-1, i.e., through PAR-4, which we confirmed by PCR analysis. Selective PAR-1 antagonists, such as RWJ-56110, should serve as useful tools to study PARs and may have therapeutic potential for treating thrombosis and restenosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary CD8+ T cells from HIV+ asymptomatics can suppress virus production from CD4+ T cells acutely infected with either non-syncytia-inducing (NSI) or syncytia-inducing (SI) HIV-1 isolates. NSI strains of HIV-1 predominantly use the CCR5 chemokine receptor as a fusion cofactor, whereas fusion of T cell line-adapted SI isolates is mediated by another chemokine receptor, CXCR4. The CCR5 ligands RANTES (regulated on activation, normal T cell expressed and secreted), macrophage inflammatory protein 1α (MIP-1α), and MIP-1β are HIV-1 suppressive factors secreted by CD8+ cells that inhibit NSI viruses. Recently, the CXC chemokine stromal cell-derived factor 1 (SDF-1) was identified as a ligand for CXCR4 and shown to inhibit SI strains. We speculated that SDF-1 might be an effector molecule for CD8+ suppression of SI isolates and assessed several SDF-1 preparations for inhibition of HIV-1LAI-mediated cell–cell fusion, and examined levels of SDF-1 transcripts in CD8+ T cells. SDF-1 fusion inhibitory activity correlated with the N terminus, and the α and β forms of SDF-1 exhibited equivalent fusion blocking activity. SDF-1 preparations having the N terminus described by Bleul et al. (Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. (1996) J. Exp. Med. 184, 1101–1109) readily blocked HIV-1LAI-mediated fusion, whereas forms containing two or three additional N-terminal amino acids lacked this activity despite their ability to bind and/or signal through CXCR4. Though SDF-1 is constitutively expressed in most tissues, CD8 T cells contained extremely low levels of SDF-1 mRNA transcripts (<1 transcript/5,000 cells), and these levels did not correlate with virus suppressive activity. We conclude that suppression of SI strains of HIV-1 by CD8+ T cells is unlikely to involve SDF-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have recently found that okadaic acid, which shows strong inhibitory activity on protein serine/threonine phosphatases and tumor-promoting activity in vivo and in vitro, induces minisatellite mutation (MSM). Human tumors and chemically induced counterparts in experimental animals are also sometimes associated with MSM. In the present study, we demonstrated minisatellite (MS) instability in severe combined immunodeficiency (SCID) cells in which the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is impaired. Cells from a SCID fibroblast cell line transformed by simian virus 40 large tumor antigen, SC3VA2, and from an embryonal SCID fibroblast cell line, SC1K, were cloned and propagated to 107 to 108 cells, and then subjected to subcloning. After propagation of each subclone to 107 to 108 cells, DNA samples were digested with HinfI and analyzed by Southern blotting using the Pc-1 MS sequence as a probe. Under low-stringency conditions, about 40 MS bands were detected, with 45% ± 6% and 37% ± 3% of SC3VA2 and SC1K cells, respectively, having MSM. In contrast, cells from the RD13B2 cell line, which was established from SCVA2 by introducing human chromosome 8q fragments, on which DNA-PKcs is known to reside, to complement the SCID phenotype, showed a very low frequency of MSM (3% ± 3%). The high frequencies of MSM in SC3VA2 and SC1K were significant, with no difference between the two. The present study clearly demonstrates that MS instability exists in SCID fibroblasts, suggesting that DNA-PKcs might be involved in the stable maintenance of MS sequences in the genome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protein Sex-lethal (SXL) controls pre-mRNA splicing of two genes involved in Drosophila sex determination: transformer (tra) and the Sxl gene itself. Previous in vitro results indicated that SXL antagonizes the general splicing factor U2AF65 to regulate splicing of tra. In this report, we have used transgenic flies expressing chimeric proteins between SXL and the effector domain of U2AF65 to study the mechanisms of splicing regulation by SXL in vivo. Conferring U2AF activity to SXL relieves its inhibitory activity on tra splicing but not on Sxl splicing. Therefore, antagonizing U2AF65 can explain tra splicing regulation both in vitro and in vivo, but this mechanism cannot explain splicing regulation of Sxl pre-mRNA. These results are a direct proof that Sxl, the master regulatory gene in sex determination, has multiple and separable activities in the regulation of pre-mRNA splicing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (EC 3.4.14.5; DPP IV), also known as the leukocyte differentiation antigen CD26 when found as an extracellular membrane-bound proline specific serine protease, cleaves a dipeptide from the N terminus of a polypeptide chain containing a proline residue in the penultimate position. Here we report that known (Z)-Ala-ψ[CF=C]-Pro dipeptide isosteres 1 and 2, which contain O-acylhydroxylamines, were isolated as diastereomeric pairs u-1, l-1, and l-2. The effect of each diastereomeric pair as an inhibitor of human placental dipeptidyl peptidase DPP IV has been examined. The inhibition of DPP IV by these compounds is rapid and efficient. The diastereomeric pair u-1 exhibits very potent inhibitory activity with a Ki of 188 nM. Fluoroolefin containing N-peptidyl-O-hydroxylamine peptidomimetics, by virtue of their inhibitory potency and stability, are superior to N-peptidyl-O-hydroxylamine inhibitors derived from an Ala-Pro dipeptide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tsetse thrombin inhibitor, a potent and specific low molecular mass (3,530 Da) anticoagulant peptide, was purified previously from salivary gland extracts of Glossina morsitans morsitans (Diptera: Glossinidae). A 303-bp coding sequence corresponding to the inhibitor has now been isolated from a tsetse salivary gland cDNA library by using degenerate oligonucleotide probes. The full-length cDNA contains a 26-bp untranslated segment at its 5′ end, followed by a 63-bp sequence corresponding to a putative secretory signal peptide. A 96-bp segment codes for the mature tsetse thrombin inhibitor, whose predicted molecular weight matches that of the purified native protein. Based on its lack of homology to any previously described family of molecules, the tsetse thrombin inhibitor appears to represent a unique class of naturally occurring protease inhibitors. Recombinant tsetse thrombin inhibitor expressed in Escherichia coli and the chemically synthesized peptide are both substantially less active than the purified native protein, suggesting that posttranslational modification(s) may be necessary for optimal inhibitory activity. The tsetse thrombin inhibitor gene, which is present as a single copy in the tsetse genome, is expressed at high levels in salivary glands and midguts of adult tsetse flies, suggesting a possible role for the anticoagulant in both feeding and processing of the bloodmeal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During mitosis an inhibitory activity associated with unattached kinetochores prevents PtK1 cells from entering anaphase until all kinetochores become attached to the spindle. To gain a better understanding of how unattached kinetochores block the metaphase/anaphase transition we followed mitosis in PtK1 cells containing two independent spindles in a common cytoplasm. We found that unattached kinetochores on one spindle did not block anaphase onset in a neighboring mature metaphase spindle 20 μm away that lacked unattached kinetochores. As in cells containing a single spindle, anaphase onset occurred in the mature spindles x̄ = 24 min after the last kinetochore attached regardless of whether the adjacent immature spindle contained one or more unattached kinetochores. These findings reveal that the inhibitory activity associated with an unattached kinetochore is functionally limited to the vicinity of the spindle containing the unattached kinetochore. We also found that once a mature spindle entered anaphase the neighboring spindle also entered anaphase x̄ = 9 min later regardless of whether it contained monooriented chromosomes. Thus, anaphase onset in the mature spindle catalyzes a “start anaphase” reaction that spreads globally throughout the cytoplasm and overrides the inhibitory signal produced by unattached kinetochores in an adjacent spindle. Finally, we found that cleavage furrows often formed between the two independent spindles. This reveals that the presence of chromosomes and/or a spindle between two centrosomes is not a prerequisite for cleavage in vertebrate somatic cells.