2 resultados para infinitely lived agents
em National Center for Biotechnology Information - NCBI
Resumo:
Memory is a hallmark of immunity. Memory carried by antibodies is largely responsible for protection against reinfection with most known acutely lethal infectious agents and is the basis for most clinically successful vaccines. However, the nature of long-term B cell and antibody memory is still unclear. B cell memory was studied here after infection of mice with the rabies-like cytopathic vesicular stomatitis virus, the noncytopathic lymphocytic choriomeningitis virus (Armstrong and WE), and after immunization with various inert viral antigens inducing naive B cells to differentiate either to plasma cells or memory B cells in germinal centers of secondary lymphoid organs. The results show that in contrast to very low background levels against internal viral antigens, no significant neutralizing antibody memory was observed in the absence of antigen and suggest that memory B cells (i) are long-lived in the absence of antigen, nondividing, and relatively resistant to irradiation, and (ii) must be stimulated by antigen to differentiate to short-lived antibody-secreting plasma cells, a process that is also efficient in the bone marrow and always depends on radiosensitive, specific T help. Therefore, for vaccines to induce long-term protective antibody titers, they need to repeatedly provide, or continuously maintain, antigen in minimal quantities over a prolonged time period in secondary lymphoid organs or the bone marrow for sufficient numbers of long-lived memory B cells to mature to short-lived plasma cells.
Resumo:
Auxin is transported across the plasma membrane of plant cells by diffusion and by two carriers operating in opposite directions, the influx and efflux carriers. Both carriers most likely play an important role in controlling auxin concentration and distribution in plants but little is known regarding their regulation. We describe the influence of modifications of the transmembrane pH gradient and the effect of agents interfering with protein synthesis, protein traffic, and protein phosphorylation on the activity of the auxin carriers in suspension-cultured tobacco (Nicotiana tabacum L.) cells. Carrier-mediated influx and efflux were monitored independently by measuring the accumulation of [14C]2,4-dichlorophenoxyacetic acid and [3H]naphthylacetic acid, respectively. The activity of the influx carrier decreased on increasing external pH and on decreasing internal pH, whereas that of the efflux carrier was only impaired on internal acidification. The efflux carrier activity was inhibited by cycloheximide, brefeldin A, and the protein kinase inhibitors staurosporine and K252a, as shown by the increased capability of treated cells to accumulate [3H]naphthylacetic acid. Kinetics and reversibility of the effect of brefeldin A were consistent with one or several components of the efflux system being turned over at the plasma membrane with a half-time of less than 10 min. Inhibition of efflux by protein kinase inhibitors suggested that protein phosphorylation was essential to sustain the activity of the efflux carrier. On the contrary, the pharmacological agents used in this study failed to inhibit [14C]2,4-dichlorophenoxyacetic acid accumulation, suggesting that rapidly turned-over proteins or proteins activated by phosphorylation are not essential to carrier-mediated auxin influx. Our data support the idea that the efflux carrier in plants constitutes a complex system regulated at multiple levels, in marked contrast with the influx carrier. Physiological implications of the kinetic features of this regulation are discussed.