17 resultados para infant carriers
em National Center for Biotechnology Information - NCBI
Resumo:
Infant acute lymphoblastic leukemia (ALL) with MLL gene rearrangements is characterized by early pre-B phenotype (CD10−/CD19+) and poor treatment outcome. The t(4;11), creating MLL-AF4 chimeric transcripts, is the predominant 11q23 chromosome translocation in infant ALL and is associated with extremely poor prognosis as compared with other 11q23 translocations. We analyzed an infant early preB ALL with ins(5;11)(q31;q13q23) and identified the AF5q31 gene on chromosome 5q31 as a fusion partner of the MLL gene. The AF5q31 gene, which encoded a protein of 1,163 aa, was located in the vicinity of the cytokine cluster region of chromosome 5q31 and contained at least 16 exons. The AF5q31 gene was expressed in fetal heart, lung, and brain at relatively high levels and fetal liver at a low level, but the expression in these tissues decreased in adults. The AF5q31 protein was homologous to AF4-related proteins, including AF4, LAF4, and FMR2. The AF5q31 and AF4 proteins had three homologous regions, including the transactivation domain of AF4, and the breakpoint of AF5q31 was located within the region homologous to the transactivation domain of AF4. Furthermore, the clinical features of this patient with the MLL-AF5q31 fusion transcript, characterized by the early pre-B phenotype (CD10−/CD19+) and poor outcome, were similar to those of patients having MLL-AF4 chimeric transcripts. These findings suggest that AF5q31 and AF4 might define a new family particularly involved in the pathogenesis of 11q23-associated-ALL.
Resumo:
We examined the MLL genomic translocation breakpoint in acute myeloid leukemia of infant twins. Southern blot analysis in both cases showed two identical MLL gene rearrangements indicating chromosomal translocation. The rearrangements were detectable in the second twin before signs of clinical disease and the intensity relative to the normal fragment indicated that the translocation was not constitutional. Fluorescence in situ hybridization with an MLL-specific probe and karyotype analyses suggested t(11;22)(q23;q11.2) disrupting MLL. Known 5′ sequence from MLL but unknown 3′ sequence from chromosome band 22q11.2 formed the breakpoint junction on the der(11) chromosome. We used panhandle variant PCR to clone the translocation breakpoint. By ligating a single-stranded oligonucleotide that was homologous to known 5′ MLL genomic sequence to the 5′ ends of BamHI-digested DNA through a bridging oligonucleotide, we formed the stem–loop template for panhandle variant PCR which yielded products of 3.9 kb. The MLL genomic breakpoint was in intron 7. The sequence of the partner DNA from band 22q11.2 was identical to the hCDCrel (human cell division cycle related) gene that maps to the region commonly deleted in DiGeorge and velocardiofacial syndromes. Both MLL and hCDCrel contained homologous CT, TTTGTG, and GAA sequences within a few base pairs of their respective breakpoints, which may have been important in uniting these two genes by translocation. Reverse transcriptase-PCR amplified an in-frame fusion of MLL exon 7 to hCDCrel exon 3, indicating that an MLL-hCDCrel chimeric mRNA had been transcribed. Panhandle variant PCR is a powerful strategy for cloning translocation breakpoints where the partner gene is undetermined. This application of the method identified a region of chromosome band 22q11.2 involved in both leukemia and a constitutional disorder.
Resumo:
Objective: To investigate whether users of oral contraceptives who are carriers of a hereditary prothrombotic condition (factor V Leiden mutation, protein C, S, or antithrombin deficiency) have an increased risk of cerebral sinus thrombosis.
Resumo:
Objectives: To evaluate impact of postnatal health education for mothers on infant care and postnatal family planning practices in Nepal.
Resumo:
We previously determined that a linear co-polymer of histidine and lysine (HK) in combination with liposomes enhanced the transfection efficiency of cationic liposomes. In the current study, we designed a series of HK polymers with increased branching and/or histidine/lysine ratio to determine if either variable affects transfection efficiency. In the presence of liposomes, the branched polymer with the highest number of histidines, HHK4b, was the most effective at enhancing gene expression. Furthermore, when serum was added to the medium during transfection, the combination of HHK4b and liposomes as a gene-delivery vehicle increased luciferase expression 400-fold compared to liposomes alone. In contrast to linear HK polymers, the higher branched HHK polymers were effective carriers of plasmids in the absence of liposomes. Without liposomes, the HHK4b carrier enhanced luciferase expression 15-fold in comparison with the lesser branched HHK2b carrier and increased expression by 5-logs in comparison with the HHK or HK carrier. The interplay of several parameters including increased condensation of DNA, buffering of acidic endosomes and differential binding affinities of polymer with DNA have a role in the enhancement of transfection by the HK polymers. In addition to suggesting that branched HK polymers are promising gene-delivery vehicles, this study provides a framework for the development of more efficient peptide-bond-based polymers of histidine and lysine.
Resumo:
BRCA1 and BRCA2 carriers are at increased risk for both breast and ovarian cancer, but estimates of lifetime risk vary widely, suggesting their penetrance is modified by other genetic and/or environmental factors. The BRCA1 and BRCA2 proteins function in DNA repair in conjunction with RAD51. A preliminary report suggested that a single nucleotide polymorphism in the 5′ untranslated region of RAD51 (135C/G) increases breast cancer risk in BRCA1 and BRCA2 carriers. To investigate this effect we studied 257 female Ashkenazi Jewish carriers of one of the common BRCA1 (185delAG, 5382insC) or BRCA2 (6174delT) mutations. Of this group, 164 were affected with breast and/or ovarian cancer and 93 were unaffected. RAD51 genotyping was performed on all subjects. Among BRCA1 carriers, RAD51-135C frequency was similar in healthy and affected women [6.1% (3 of 49) and 9.9% (12 of 121), respectively], and RAD-135C did not influence age of cancer diagnosis [Hazard ratio (HR) = 1.18 for disease in RAD51-135C heterozygotes, not significant]. However, in BRCA2 carriers, RAD51-135C heterozygote frequency in affected women was 17.4% (8 of 46) compared with 4.9% (2 of 41) in unaffected women (P = 0.07). Survival analysis in BRCA2 carriers showed RAD51-135C increased risk of breast and/or ovarian cancer with an HR of 4.0 [95% confidence interval 1.6–9.8, P = 0.003]. This effect was largely due to increased breast cancer risk with an HR of 3.46 (95% confidence interval 1.3–9.2, P = 0.01) for breast cancer in BRCA2 carriers who were RAD51-135C heterozygotes. RAD51 status did not affect ovarian cancer risk. These results show RAD51-135C is a clinically significant modifier of BRCA2 penetrance, specifically in raising breast cancer risk at younger ages.
Resumo:
Low folate intake as well as alterations in folate metabolism as a result of polymorphisms in the enzyme methylenetetrahydrofolate reductase (MTHFR) have been associated with an increased incidence of neural tube defects, vascular disease, and some cancers. Polymorphic variants of MTHFR lead to enhanced thymidine pools and better quality DNA synthesis that could afford some protection from the development of leukemias, particularly those with translocations. We now report associations of MTHFR polymorphisms in three subgroups of pediatric leukemias: infant lymphoblastic or myeloblastic leukemias with MLL rearrangements and childhood lymphoblastic leukemias with either TEL-AML1 fusions or hyperdiploid karyotypes. Pediatric leukemia patients (n = 253 total) and healthy newborn controls (n = 200) were genotyped for MTHFR polymorphisms at nucleotides 677 (C→T) and 1,298 (A→C). A significant association for carriers of C677T was demonstrated for leukemias with MLL translocations (MLL+, n = 37) when compared with controls [adjusted odd ratios (OR) = 0.36 with a 95% confidence interval (CI) of 0.15–0.85; P = 0.017]. This protective effect was not evident for A1298C alleles (OR = 1.14). In contrast, associations for A1298C homozygotes (CC; OR = 0.26 with a 95% CI of 0.07–0.81) and C677T homozygotes (TT; OR = 0.49 with a 95% CI of 0.20–1.17) were observed for hyperdiploid leukemias (n = 138). No significant associations were evident for either polymorphism with TEL-AML1+ leukemias (n = 78). These differences in allelic associations may point to discrete attributes of the two alleles in their ability to alter folate and one-carbon metabolite pools and impact after DNA synthesis and methylation pathways, but should be viewed cautiously pending larger follow-up studies. The data provide evidence that molecularly defined subgroups of pediatric leukemias have different etiologies and also suggest a role of folate in the development of childhood leukemia.