3 resultados para inducible systems
em National Center for Biotechnology Information - NCBI
Resumo:
During metamorphosis of Drosophila melanogaster, a cascade of morphological changes is triggered by the steroid hormone 20-OH ecdysone via the ecdysone receptor, a member of the nuclear receptor superfamily. In this report, we have transferred insect hormone responsiveness to mammalian cells by the stable expression of a modified ecdysone receptor that regulates an optimized ecdysone responsive promoter. Inductions reaching 4 orders of magnitude have been achieved upon treatment with hormone. Transgenic mice expressing the modified ecdysone receptor can activate an integrated ecdysone responsive promoter upon administration of hormone. A comparison of tetracycline-based and ecdysone-based inducible systems reveals the ecdysone regulatory system exhibits lower basal activity and higher inducibility. Since ecdysone administration has no apparent effect on mammals, its use for regulating genes should be excellent for transient inducible expression of any gene in transgenic mice and for gene therapy.
Resumo:
Plants possess multiple resistance mechanisms that guard against pathogen attack. Among these are inducible systems such as systemic acquired resistance (SAR). SAR is activated by pathogen exposure and leads to an increase in salicylic acid (SA), high-level expression of SAR-related genes, and resistance to a spectrum of pathogens. To identify components of the signal transduction pathways regulating SAR, a mutant screen was developed that uses 2,6-dichloroisonicotinic acid as an activator of SAR gene expression and pathogen resistance, followed by assays for resistance to the fungal pathogen Peronospora parasitica. Mutants from this screen were subsequently examined to assess their defense responses. We describe here a recessive mutation that causes a phenotype of insensitivity to chemical and biological inducers of SAR genes and resistance. These data indicate the existence of a common signaling pathway that couples these diverse stimuli to induction of SAR genes and resistance. Because of its non-inducible immunity phenotype, we call this mutant nim1. Although nim1 plants fail to respond to SA, they retain the ability to accumulate wild-type levels of SA, a probable endogenous signal for SAR. Further, the ability of nim1 plants to support growth of normally incompatible races of a fungal pathogen indicates a role for this pathway in expression of genetically determined resistance, consistent with earlier findings for transgenic plants engineered to break down SA. These results suggest that the wild-type NIM1 gene product functions in a pathway regulating acquired resistance, at a position downstream of SA accumulation and upstream of SAR gene induction and expression of resistance.
Resumo:
The Saccharomyces cerevisiae gene ERD2 is responsible for the retrieval of lumenal resident proteins of the endoplasmic reticulum (ER) lost to the next secretory compartment. Previous studies have suggested that the retrieval of proteins by ERD2 is not essential. Here, we find that ERD2-mediated retrieval is not an essential process only because, on its failure, a second inducible system acts to maintain levels of ER proteins. The second system is controlled by the ER membrane-bound kinase encoded by IRE1. We conclude that IRE1 and ERD2 together maintain normal concentrations of resident proteins within the ER.