17 resultados para in field detection

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a technique, methylation-specific PCR in situ hybridization (MSP-ISH), which allows for the methylation status of specific DNA sequences to be visualized in individual cells. We use MSP-ISH to monitor the timing and consequences of aberrant hypermethylation of the p16 tumor suppresser gene during the progression of cancers of the lung and cervix. Hypermethylation of p16 was localized only to the neoplastic cells in both in situ lesions and invasive cancers, and was associated with loss of p16 protein expression. MSP-ISH allowed us to dissect the surprising finding that p16 hypermethylation occurs in cervical carcinoma. This tumor is associated with infection of the oncogenic human papillomavirus, which expresses a protein, E7, that inactivates the retinoblastoma (Rb) protein. Thus, simultaneous Rb and p16 inactivation would not be needed to abrogate the critical cyclin D–Rb pathway. MSP-ISH reveals that p16 hypermethylation occurs heterogeneously within early cervical tumor cell populations that are separate from those expressing viral E7 transcripts. In advanced cervical cancers, the majority of cells have a hypermethylated p16, lack p16 protein, but no longer express E7. These data suggest that p16 inactivation is selected as the most effective mechanism of blocking the cyclin D–Rb pathway during the evolution of an invasive cancer from precursor lesions. These studies demonstrate that MSP-ISH is a powerful approach for studying the dynamics of aberrant methylation of critical tumor suppressor genes during tumor evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology, fluorescence-intensity distribution analysis, has been developed for confocal microscopy studies in which the fluorescence intensity of a sample with a heterogeneous brightness profile is monitored. An adjustable formula, modeling the spatial brightness distribution, and the technique of generating functions for calculation of theoretical photon count number distributions serve as the two cornerstones of the methodology. The method permits the simultaneous determination of concentrations and specific brightness values of a number of individual fluorescent species in solution. Accordingly, we present an extremely sensitive tool to monitor the interaction of fluorescently labeled molecules or other microparticles with their respective biological counterparts that should find a wide application in life sciences, medicine, and drug discovery. Its potential is demonstrated by studying the hybridization of 5′-(6-carboxytetramethylrhodamine)-labeled and nonlabeled complementary oligonucleotides and the subsequent cleavage of the DNA hybrids by restriction enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated mRNA 3′-end-processing signals in each of six eukaryotic species (yeast, rice, arabidopsis, fruitfly, mouse, and human) through the analysis of more than 20,000 3′-expressed sequence tags. The use and conservation of the canonical AAUAAA element vary widely among the six species and are especially weak in plants and yeast. Even in the animal species, the AAUAAA signal does not appear to be as universal as indicated by previous studies. The abundance of single-base variants of AAUAAA correlates with their measured processing efficiencies. As found previously, the plant polyadenylation signals are more similar to those of yeast than to those of animals, with both common content and arrangement of the signal elements. In all species examined, the complete polyadenylation signal appears to consist of an aggregate of multiple elements. In light of these and previous results, we present a broadened concept of 3′-end-processing signals in which no single exact sequence element is universally required for processing. Rather, the total efficiency is a function of all elements and, importantly, an inefficient word in one element can be compensated for by strong words in other elements. These complex patterns indicate that effective tools to identify 3′-end-processing signals will require more than consensus sequence identification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bruton’s tyrosine kinase (Btk) is a critical transducer of signals originating from the B cell antigen receptor (BCR). Dosage, sequential phosphorylation, and protein interactions are interdependent mechanisms influencing Btk function. Phosphopeptide-specific mAbs recognizing two distinct phosphotyrosine modifications were used to quantify Btk activation by immunofluorescent techniques during B cell stimulation. In a population of cultured B cells stimulated by BCR crosslinking and analyzed by flow cytometry, transient phosphorylation of the regulatory Btk tyrosine residues (551Y and 223Y) was detected. The kinetics of phosphorylation of the residues were temporally distinct. Tyrosine 551, a transactivating substrate site for Src-family kinases, was maximally phosphorylated within ≈30 seconds of stimulation as monitored by flow cytometry. Tyrosine 223, an autophosphorylation site within the SH3 domain, was maximally phosphorylated at ≈5 minutes. Btk returned to a low tyrosine phosphorylation level within 30 minutes, despite persistent elevation of global tyrosine phosphorylation. Colocalization of activated Btk molecules with the crosslinked BCR signaling complex was observed to coincide with the period of maximal Btk tyrosine phosphorylation when stimulated B cells were analyzed with confocal microscopy. The results of these in situ temporal and spatial analyses imply that Btk signaling occurs in the region of the Ig receptor signaling complex, suggesting a similar location for downstream targets of its activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strategies for delaying pest resistance to genetically modified crops that produce Bacillus thuringiensis (Bt) toxins are based primarily on theoretical models. One key assumption of such models is that genes conferring resistance are rare. Previous estimates for lepidopteran pests targeted by Bt crops seem to meet this assumption. We report here that the estimated frequency of a recessive allele conferring resistance to Bt toxin Cry1Ac was 0.16 (95% confidence interval = 0.05–0.26) in strains of pink bollworm (Pectinophora gossypiella) derived from 10 Arizona cotton fields during 1997. Unexpectedly, the estimated resistance allele frequency did not increase from 1997 to 1999 and Bt cotton remained extremely effective against pink bollworm. These results demonstrate that the assumptions and predictions of resistance management models must be reexamined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the earliest events in programmed cell death is the externalization of phosphatidylserine, a membrane phospholipid normally restricted to the inner leaflet of the lipid bilayer. Annexin V, an endogenous human protein with a high affinity for membrane bound phosphatidylserine, can be used in vitro to detect apoptosis before other well described morphologic or nuclear changes associated with programmed cell death. We tested the ability of exogenously administered radiolabeled annexin V to concentrate at sites of apoptotic cell death in vivo. After derivatization with hydrazinonicotinamide, annexin V was radiolabeled with technetium 99m. In vivo localization of technetium 99m hydrazinonicotinamide-annexin V was tested in three models: fuminant hepatic apoptosis induced by anti-Fas antibody injection in BALB/c mice; acute rejection in ACI rats with transplanted heterotopic PVG cardiac allografts; and cyclophosphamide treatment of transplanted 38C13 murine B cell lymphomas. External radionuclide imaging showed a two- to sixfold increase in the uptake of radiolabeled annexin V at sites of apoptosis in all three models. Immunohistochemical staining of cardiac allografts for exogenously administered annexin V revealed intense staining of numerous myocytes at the periphery of mononuclear infiltrates of which only a few demonstrated positive apoptotic nuclei by the terminal deoxynucleotidyltransferase-mediated UTP end labeling method. These results suggest that radiolabeled annexin V can be used in vivo as a noninvasive means to detect and serially image tissues and organs undergoing programmed cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthesis and photoinhibition in field-grown rice (Oryza sativa L.) were examined in relation to leaf age and orientation. Two varieties (IR72 and IR65598-112-2 [BSI206]) were grown in the field in the Philippines during the dry season under highly irrigated, well-fertilized conditions. Flag leaves were examined 60 and 100 d after transplanting. Because of the upright nature of 60-d-old rice leaves, patterns of photosynthesis were determined by solar movements: light falling on the exposed surface in the morning, a low incident angle of irradiance at midday, and light striking the opposite side of the leaf blade in the afternoon. There was an early morning burst of CO2 assimilation and high levels of saturation of photosystem II electron transfer as incident irradiance reached a maximum level. However, by midday the photochemical efficiency increased again almost to maximum. Leaves that were 100 d old possessed a more horizontal orientation and were found to suffer greater levels of photoinhibition than younger leaves, and this was accompanied by increases in the de-epoxidation state of the xanthophyll cycle. Older leaves had significantly lower chlorophyll content but only slightly diminished photosynthesis capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo assessment of gene expression is desirable to obtain information on the extent and duration of transduction of tissue after gene delivery. We have developed an in vivo, potentially noninvasive, method for detecting virally mediated gene transfer to the liver. The method employs an adenoviral vector carrying the gene for the brain isozyme of murine creatine kinase (CK-B), an ATP-buffering enzyme expressed mainly in muscle and brain but absent from liver, kidney, and pancreas. Gene expression was monitored by 31P magnetic resonance spectroscopy (MRS) using the product of the CK enzymatic reaction, phosphocreatine, as an indicator of transfection. The vector was administered into nude mice by tail vein injection, and exogenous creatine was administered in the drinking water and by i.p. injection of 2% creatine solution before 31P MRS examination, which was performed on surgically exposed livers. A phosphocreatine resonance was detected in livers of mice injected with the vector and was absent from livers of control animals. CK expression was confirmed in the injected animals by Western blot analysis, enzymatic assays, and immunofluorescence measurements. We conclude that the syngeneic enzyme CK can be used as a marker gene for in vivo monitoring of gene expression after virally mediated gene transfer to the liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of dipolar contributions to the splitting of 15N resonances of 1H-15N amide pairs in multidimensional high-field NMR spectra of field-oriented cyanometmyoglobin is reported. The splittings appear as small field-dependent perturbations of normal scalar couplings. Assignment of more than 90 resonances to specific sequential sites in the protein allows correlation of the dipolar contributions with predictions based on the known susceptibility and known structure of the protein. Implications as an additional source of information for protein structure determination in solution are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive assay combining immunomagnetic enrichment with multiparameter flow cytometric and immunocytochemical analysis has been developed to detect, enumerate, and characterize carcinoma cells in the blood. The assay can detect one epithelial cell or less in 1 ml of blood. Peripheral blood (10–20 ml) from 30 patients with carcinoma of the breast, from 3 patients with prostate cancer, and from 13 controls was examined by flow cytometry for the presence of circulating epithelial cells defined as nucleic acid+, CD45−, and cytokeratin+. Highly significant differences in the number of circulating epithelial cells were found between normal controls and patients with cancer including 17 with organ-confined disease. To determine whether the circulating epithelial cells in the cancer patients were neoplastic cells, cytospin preparations were made after immunomagnetic enrichment and were analyzed. Epithelial cells from patients with breast cancer generally stained with mAbs against cytokeratin and 3 of 5 for mucin-1. In contrast, no cells that stained for these antigens were observed in the blood from normal controls. The morphology of the stained cells was consistent with that of neoplastic cells. Of 8 patients with breast cancer followed for 1–10 months, there was a good correlation between changes in the level of tumor cells in the blood with both treatment with chemotherapy and clinical status. The present assay may be helpful in early detection, in monitoring disease, and in prognostication.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding the relationship between animal community dynamics and landscape structure has become a priority for biodiversity conservation. In particular, predicting the effects of habitat destruction that confine species to networks of small patches is an important prerequisite to conservation plan development. Theoretical models that predict the occurrence of species in fragmented landscapes, and relationships between stability and diversity do exist. However, reliable empirical investigations of the dynamics of biodiversity have been prevented by differences in species detection probabilities among landscapes. Using long-term data sampled at a large spatial scale in conjunction with a capture-recapture approach, we developed estimates of parameters of community changes over a 22-year period for forest breeding birds in selected areas of the eastern United States. We show that forest fragmentation was associated not only with a reduced number of forest bird species, but also with increased temporal variability in the number of species. This higher temporal variability was associated with higher local extinction and turnover rates. These results have major conservation implications. Moreover, the approach used provides a practical tool for the study of the dynamics of biodiversity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Allele frequency variation at the phosphoglucose isomerase (PGI) locus in Californian populations of the beetle Chrysomela aeneicollis suggests that PGI may be undergoing natural selection. We quantified (i) apparent Michaelis-Menten constant (Km) of fructose 6-phosphate at different temperatures and (ii) thermal stability for three common PGI genotypes (1–1, 1–4, and 4–4). We also measured air temperature (Ta) and beetle body temperature (Tb) in three montane drainages in the Sierra Nevada, California. Finally, we measured 70-kDa heat shock protein (Hsp70) expression in field-collected and laboratory-acclimated beetles. We found that PGI allele 1 predominated in the northernmost drainage, Rock Creek (RC), which was also significantly cooler than the southernmost drainage, Big Pine Creek (BPC), where PGI allele 4 predominated. Allele frequencies and air temperatures were intermediate in the middle drainage, Bishop Creek (BC). Differences among genotypes in Km (1–1 > 1–4 > 4–4) and thermal stability (4–4 > 1–4 > 1–1) followed a pattern consistent with temperature adaptation. In nature, Tb was closely related to Ta. Hsp70 expression in adult beetles decreased with elevation and differed among drainages (BPC > BC > RC). After laboratory acclimation (8 days, 20°C day, 4°C night) and heat shock (4 h, 28–36°C), Hsp70 expression was greater for RC than BPC beetles. In RC, field-collected beetles homozygous for PGI 1–1 had higher Hsp70 levels than heterozygotes or a 4–4 homozygote. These results reveal functional and physiological differences among PGI genotypes, which suggest that montane populations of this beetle are locally adapted to temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There has been a great deal of recent attention on the suspected increase in amphibian deformities. However, most reports of amphibian deformities have been anecdotal, and no experiments in the field under natural conditions have been performed to investigate this phenomenon. Under laboratory conditions, a variety of agents can induce deformities in amphibians. We investigated one of these agents, UV-B radiation, in field experiments, as a cause for amphibian deformities. We monitored hatching success and development in long-toed salamanders under UV-B shields and in regimes that allowed UV-B radiation. Embryos under UV-B shields had a significantly higher hatching rate and fewer deformities, and developed more quickly than those exposed to UV-B. Deformities may contribute directly to embryo mortality, and they may affect an individual’s subsequent survival after hatching.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DNA replication of phage-plasmid P4 in its host Escherichia coli depends on its replication protein α. In the plasmid state, P4 copy number is controlled by the regulator protein Cnr (copy number regulation). Mutations in α (αcr) that prevent regulation by Cnr cause P4 over-replication and cell death. Using the two-hybrid system in Saccharomyces cerevisiae and a system based on λ immunity in E.coli for in vivo detection of protein–protein interactions, we found that: (i) α protein interacts with Cnr, whereas αcr proteins do not; (ii) both α–α and αcr–αcr interactions occur and the interaction domain is located within the C-terminal of α; (iii) Cnr–Cnr interaction also occurs. Using an in vivo competition assay, we found that Cnr interferes with both α–α and αcr–αcr dimerization. Our data suggest that Cnr and α interact in at least two ways, which may have different functional roles in P4 replication control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have introduced the LTR-retrotransposon MAGGY into a naive genome of Magnaporthe grisea and estimated the copy number of MAGGY in a cell by serial isolation of fungal protoplasts at certain time intervals. The number of MAGGY elements rapidly increased for a short period following introduction. However, it did not increase geometrically and reached equilibrium at 20–30 copies per genome, indicating that MAGGY was repressed or silenced during proliferation. De novo methylation of MAGGY occurred immediately following invasion into the genome but the degree of methylation was constant and did not correlate with the repression of MAGGY. 5-Azacytidine treatment demethylated and transcriptionally activated the MAGGY element in regenerants but did not affect transpositional frequency, suggesting that post-transcriptional suppression, not methylation, is the main force that represses MAGGY proliferation in M.grisea. Support for this conclusion was also obtained by examining the methylation status of MAGGY sequences in field isolates of M.grisea with active or inactive MAGGY elements. Methylation of the MAGGY sequences was detected in some isolates but not in others. However, the methylation status did not correlate with the copy numbers and activity of the elements.