3 resultados para image analysis
em National Center for Biotechnology Information - NCBI
Resumo:
High-resolution video microscopy, image analysis, and computer simulation were used to study the role of the Spitzenkörper (Spk) in apical branching of ramosa-1, a temperature-sensitive mutant of Aspergillus niger. A shift to the restrictive temperature led to a cytoplasmic contraction that destabilized the Spk, causing its disappearance. After a short transition period, new Spk appeared where the two incipient apical branches emerged. Changes in cell shape, growth rate, and Spk position were recorded and transferred to the fungus simulator program to test the hypothesis that the Spk functions as a vesicle supply center (VSC). The simulation faithfully duplicated the elongation of the main hypha and the two apical branches. Elongating hyphae exhibited the growth pattern described by the hyphoid equation. During the transition phase, when no Spk was visible, the growth pattern was nonhyphoid, with consecutive periods of isometric and asymmetric expansion; the apex became enlarged and blunt before the apical branches emerged. Video microscopy images suggested that the branch Spk were formed anew by gradual condensation of vesicle clouds. Simulation exercises where the VSC was split into two new VSCs failed to produce realistic shapes, thus supporting the notion that the branch Spk did not originate by division of the original Spk. The best computer simulation of apical branching morphogenesis included simulations of the ontogeny of branch Spk via condensation of vesicle clouds. This study supports the hypothesis that the Spk plays a major role in hyphal morphogenesis by operating as a VSC—i.e., by regulating the traffic of wall-building vesicles in the manner predicted by the hyphoid model.
Resumo:
The discovery that the epsilon 4 allele of the apolipoprotein E (apoE) gene is a putative risk factor for Alzheimer disease (AD) in the general population has highlighted the role of genetic influences in this extremely common and disabling illness. It has long been recognized that another genetic abnormality, trisomy 21 (Down syndrome), is associated with early and severe development of AD neuropathological lesions. It remains a challenge, however, to understand how these facts relate to the pathological changes in the brains of AD patients. We used computerized image analysis to examine the size distribution of one of the characteristic neuropathological lesions in AD, deposits of A beta peptide in senile plaques (SPs). Surprisingly, we find that a log-normal distribution fits the SP size distribution quite well, motivating a porous model of SP morphogenesis. We then analyzed SP size distribution curves in genotypically defined subgroups of AD patients. The data demonstrate that both apoE epsilon 4/AD and trisomy 21/AD lead to increased amyloid deposition, but by apparently different mechanisms. The size distribution curve is shifted toward larger plaques in trisomy 21/AD, probably reflecting increased A beta production. In apoE epsilon 4/AD, the size distribution is unchanged but the number of SP is increased compared to apoE epsilon 3, suggesting increased probability of SP initiation. These results demonstrate that subgroups of AD patients defined on the basis of molecular characteristics have quantitatively different neuropathological phenotypes.