2 resultados para hypopigmentation
em National Center for Biotechnology Information - NCBI
Resumo:
Copper plays a fundamental role in the biochemistry of all aerobic organisms. The delivery of this metal to specific intracellular targets is mediated by metallochaperones. To elucidate the role of the metallochaperone Atox1, we analyzed mice with a disruption of the Atox1 locus. Atox1−/− mice failed to thrive immediately after birth, with 45% of pups dying before weaning. Surviving animals exhibited growth failure, skin laxity, hypopigmentation, and seizures because of perinatal copper deficiency. Maternal Atox1 deficiency markedly increased the severity of Atox1−/− phenotype, resulting in increased perinatal mortality as well as severe growth retardation and congenital malformations among surviving Atox1−/− progeny. Furthermore, Atox1-deficient cells accumulated high levels of intracellular copper, and metabolic studies indicated that this defect was because of impaired cellular copper efflux. Taken together, these data reveal a direct role for Atox1 in trafficking of intracellular copper to the secretory pathway of mammalian cells and demonstrate that this metallochaperone plays a critical role in perinatal copper homeostasis.
Resumo:
Ocular albinism type 1 (OA1) is an inherited disorder characterized by severe reduction of visual acuity, photophobia, and retinal hypopigmentation. Ultrastructural examination of skin melanocytes and of the retinal pigment epithelium reveals the presence of macromelanosomes, suggesting a defect in melanosome biogenesis. The gene responsible for OA1 is exclusively expressed in pigment cells and encodes a predicted protein of 404 aa displaying several putative transmembrane domains and sharing no similarities with previously identified molecules. Using polyclonal antibodies we have identified the endogenous OA1 protein in retinal pigment epithelial cells, in normal human melanocytes and in various melanoma cell lines. Two forms of the OA1 protein were identified by Western analysis, a 60-kDa glycoprotein and a doublet of 48 and 45 kDa probably corresponding to unglycosylated precursor polypeptides. Upon subcellular fractionation and phase separation with the nonionic detergent Triton X-114, the OA1 protein segregated into the melanosome-rich fraction and behaved as an authentic integral membrane protein. Immunofluorescence and immunogold analyses on normal human melanocytes confirmed the melanosomal membrane localization of the endogenous OA1 protein, consistent with its possible involvement in melanosome biogenesis. The identification of a novel melanosomal membrane protein involved in a human disease will provide insights into the mechanisms that control the cell-specific pathways of subcellular morphogenesis.