4 resultados para hydrogel scaffolds

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to clarify the relative roles of medial versus luminal factors in the induction of thickening of the arterial intima after balloon angioplasty injury. Platelet-derived growth factor (PDGF) and thrombin, both associated with thrombosis, and basic fibroblast growth factor (bFGF), stored in the arterial wall, have been implicated in this process. To unequivocally isolate the media from luminally derived factors, we used a 20-μm thick hydrogel barrier that adhered firmly to the arterial wall to block thrombus deposition after balloon-induced injury of the carotid artery of the rat. Thrombosis, bFGF mobilization, medial repopulation, and intimal thickening were measured. Blockade of postinjury arterial contact with blood prevented thrombosis and dramatically inhibited both intimal thickening and endogenous bFGF mobilization. By blocking blood contact on the two time scales of thrombosis and of intimal thickening, and by using local protein release to probe, by reconstitution, the individual roles of PDGF-BB and thrombin, we were able to conclude that a luminally derived factor other than PDGF or thrombin is required for the initiation of cellular events leading to intimal thickening after balloon injury in the rat. We further conclude that a luminally derived factor is required for mobilization of medial bFGF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of β-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered β-arrestin-2 binding to the receptor and internalization of AT1aR-β-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-β-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, β-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged β-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with β-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with β-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to β-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in β-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to β-arrestin-2, and the association of β-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that β-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Betidamino acids (a contraction of "beta" position and "amide") are N'-monoacylated (optionally, N'-monoacylated and N-mono- or N,N'-dialkylated) aminoglycine derivatives in which each N'acyl/alkyl group may mimic naturally occurring amino acid side chains or introduce novel functionalities. Betidamino acids are most conveniently generated on solid supports used for the synthesis of peptides by selective acylation of one of the two amino functions of orthogonally protected aminoglycine(s) to generate the side chain either prior to or after the elongation of the main chain. We have used unresolved Nalpha-tert-butyloxycarbonyl-N'alpha-fluorenylmethoxycarbonyl++ + aminoglycine, and Nalpha-(Nalpha-methyl)-tert-butyloxycarbonyl-N'alpha-fluo renylmethoxycarbonyl aminoglycine as the templates for the introduction of betidamino acids in Acyline [Ac-D2Nal-D4Cpa-D3Pal-Ser-4Aph(Ac)-D4Aph(A c)-Leu-Ilys-Pro-DAla-NH2, where 2Nal is 2-naphthylalanine, 4Cpa is 4-chlorophenylalanine, 3Pal is 3-pyridylalanine, Aph is 4-aminophenylalanine, and Ilys is Nepsilon-isopropyllysine], a potent gonadotropin-releasing hormone antagonist, in order to test biocompatibility of these derivatives. Diasteremneric peptides could be separated in most cases by reverse-phase HPLC. Biological results indicated small differences in relative potencies (<5-fold) between the D and L nonalkylated betidamino acid-containing Acyline derivatives. Importantly, most betide diastereomers were equipotent with Acyline. In an attempt to correlate structure and observed potency, Ramachandran-type plots were calculated for a series of betidamino acids and their methylated homologs. According to these calculations, betidamino acids have access to a more limited and distinct number of conformational states (including those associated with alpha-helices, beta-sheets, or turn structures), with deeper minima than those observed for natural amino acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact, well-organized, and natural motif, stabilized by three disulfide bonds, is proposed as a basic scaffold for protein engineering. This motif contains 37 amino acids only and is formed by a short helix on one face and an antiparallel triple-stranded beta-sheet on the opposite face. It has been adopted by scorpions as a unique scaffold to express a wide variety of powerful toxic ligands with tuned specificity for different ion channels. We further tested the potential of this fold by engineering a metal binding site on it, taking the carbonic anhydrase site as a model. By chemical synthesis we introduced nine residues, including three histidines, as compared to the original amino acid sequence of the natural charybdotoxin and found that the new protein maintains the original fold, as revealed by CD and 1H NMR analysis. Cu2+ ions are bound with Kd = 4.2 x 10(-8) M and other metals are bound with affinities in an order mirroring that observed in carbonic anhydrase. The alpha/beta scorpion motif, small in size, easily amenable to chemical synthesis, highly stable, and tolerant for sequence mutations represents, therefore, an appropriate scaffold onto which polypeptide sequences may be introduced in a predetermined conformation, providing an additional means for design and engineering of small proteins.