9 resultados para hormone induction
em National Center for Biotechnology Information - NCBI
Resumo:
The use of fertility drugs has continued to grow since their introduction in the 1960s. Accompanying this increase has been the speculation that repetitive use of these drugs can cause ovarian tumors or cancer. We recently reported that transgenic mice with chronically elevated luteinizing hormone (LH), an analog of which is commonly used in fertility regimens, develop granulosa cell (GC) tumors. In this report we show that LH induction of these tumors is highly dependent on genetic background. In CF-1 mice, chronically elevated LH invariably causes GC tumors by 5 months of age. However, in hybrid mice generated by crossing CF-1 males with C57BL/6, SJL, or CD-1 females, elevated levels of this same hormone cause a completely different phenotype resembling a luteoma of pregnancy. We also show that three genes likely control these alternative hormonal responses. This clinical correlate of elevated LH reveals remarkably distinct, strain-dependent, ovarian phenotypes. In addition, these results support the rare incidence of GC tumors in the human population, and suggest that the ability of certain fertility drugs to cause ovarian tumors may depend on an individual's genetic predisposition.
Resumo:
The mouse mammary tumor virus (MMTV) promoter is regulated by steroid hormones through a hormone-responsive region that is organized in a positioned nucleosome. Hormone induction leads to a structural change of this nucleosome which makes its DNA more sensitive to cleavage by DNase I and enables simultaneous binding of all relevant transcription factors. In cells carrying either episomal or chromosomally integrated MMTV promoters, moderate acetylation of core histones, generated by treatment with low concentrations of the histone deacetylase inhibitors sodium butyrate or trichostatin A, enhances transcription from the MMTV promoter in the absence of hormone and potentiates transactivation by either glucocorticoids or progestins. At higher concentrations, histone deacetylase inhibitors reduce basal and hormone induced MMTV transcription. Inducing inhibitor concentrations lead to the same type of nucleosomal DNase I hypersensitivity as hormone treatment, suggesting that moderate acetylation of core histone activates the MMTV promoter by mechanisms involving chromatin remodeling similar to that generated by the inducing hormones.
Resumo:
Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation.
Resumo:
Thyroid gland function is regulated by the hypothalamic-pituitary axis via the secretion of TSH, according to environmental, developmental, and circadian stimuli. TSH modulates both the secretion of thyroid hormone and gland trophism through interaction with a specific guanine nucleotide-binding protein-coupled receptor (TSH receptor; TSH-R), which elicits the activation of the cAMP-dependent signaling pathway. After TSH stimulation, the levels of TSH-R RNA are known to decrease dramatically within a few hours. This phenomenon ultimately leads to homologous long-term desensitization of the TSH-R. Here we show that TSH drives the induction of the inducible cAMP early repressor (ICER) isoform of the cAMP response element (CRE) modulator gene both in rat thyroid gland and in the differentiated thyroid cell line FRTL-5. The kinetics of ICER protein induction mirrors the down-regulation of TSH-R mRNA. ICER binds to a CRE-like sequence in the TSH-R promoter and represses its expression. Thus, ICER induction by TSH in the thyroid gland represents a paradigm of the molecular mechanism by which pituitary hormones elicit homologous long-term desensitization.
Resumo:
High-level expression of the human growth hormone (hGH) gene is limited to somatotrope and lactosomatotrope cells of the anterior pituitary. We previously identified a locus control region (LCR) for the hGH gene composed of four tissue-specific DNase I-hypersensitive sites (HS) located between −14.6 kb and −32 kb 5′ to the hGH transcription start site that is responsible for establishing a physiologically regulated chromatin domain for hGH transgene expression in mouse pituitary. In the present study we demonstrated that the LCR mediates somatotrope and lactosomatotrope restriction on an otherwise weakly and diffusely expressed hGH transgene. The subregion of the LCR containing the two pituitary-specific HS, HSI and HSII (−14.6 to −16.2 kb relative to the hGH promoter and denoted HSI,II), was found to be sufficient for mediating somatotrope and lactosomatotrope restriction, for appropriately timed induction of hGH transgene expression between embryonic days 15.5 and 16.5, and for selective extinction of hGH expression in mature lactotropes. When studied by cell transfection, the HSI,II fragment selectively enhanced transcription in a presomatotrope-derived cell line, although at levels (2- to 3-fold) well below that seen in vivo. The LCR activity of the HSI,II element was therefore localized by scoring transgene expression in fetal founder pituitaries at embryonic day 18.5. The data from these studies indicated that a 404-bp segment of the HSI,II region encodes a critical subset of LCR functions, including the establishment of a productive chromatin environment, cell-specific restriction and enhancement of expression, and appropriately timed induction of the hGH transgene during embryonic development.
Resumo:
ENOD40, an early nodulin gene, is expressed following inoculation with Rhizobium meliloti or by adding R. meliloti-produced nodulation (Nod) factors or the plant hormone cytokinin to uninoculated roots. We isolated two MsENOD40 clones, designated MsENOD40–1 and MsENOD40–2, with distinct promoters from an alfalfa (Medicago sativa cv Chief) genomic library. The promoters were fused to the reporter gene uidA (gus), and the constructs were introduced into alfalfa. We observed that the MsENOD40–1 construct was expressed almost exclusively under symbiotic conditions. The MsENOD40–2 construct was transcribed under both symbiotic and nonsymbiotic conditions and in nonnodular and nodular tissues. Both MsENOD40 promoter-gus constructs were similarly expressed as nodules developed, and both were expressed in roots treated with 6-benzylaminopurine or purified Nod factor. However, no blue color was detected in nodule-like structures induced by the auxin transport inhibitor N-1-(naphthyl)phthalamic acid on roots of plants containing the MsENOD40–1 promoter construct, whereas pseudonodules from plants containing the MsENOD40–2 promoter construct stained blue. A 616-bp region at the distal 5′ end of the promoter is important for proper spatial expression of MsENOD40 in nodules and also for Nod-factor and cytokinin-induced expression.
Resumo:
Estrogen receptor (ER) and thyroid hormone receptors (TRs) are ligand-dependent nuclear transcription factors that can bind to an identical half-site, AGGTCA, of their cognate hormone response elements. By in vitro transfection analysis in CV-1 cells, we show that estrogen induction of chloramphenicol acetyltransferase (CAT) activity in a construct containing a CAT reporter gene under the control of a minimal thymidine kinase (tk) promoter and a copy of the consensus ER response element was attenuated by cotransfection of TR alpha 1 plus triiodothyronine treatment. This inhibitory effect of TR was ligand-dependent and isoform-specific. Neither TR beta 1 nor TR beta 2 cotransfection inhibited estrogen-induced CAT activity, although both TR alpha and TR beta can bind to a consensus ER response element. Furthermore, cotransfection of a mutated TR alpha 1 that lacks binding to the AGGTCA sequence also inhibited the estrogen effect. Thus, the repression of estrogen action by liganded TR alpha 1 may involve protein-protein interactions although competition of ER and TR at the DNA level cannot be excluded. A similar inhibitory effect of liganded TR alpha 1 on estrogen induction of CAT activity was observed in a construct containing the preproenkephalin (PPE) promoter. A study in hypophysectomized female rats demonstrated that the estrogen-induced increase in PPE mRNA levels in the ventromedial hypothalamus was diminished by coadministration of triiodothyronine. These results suggest that ER and TR may interact to modulate estrogen-sensitive gene expression, such as for PPE, in the hypothalamus.
Resumo:
Graves disease is an autoimmune thyroid disease characterized by the presence of antibodies against the thyrotropin receptor (TSHR), which stimulate the thyroid to cause hyperthyroidism and/or goiter. By immunizing mice with fibroblasts transfected with both the human TSHR and a major histocompatibility complex class II molecule, but not by either alone, we have induced immune hyperthyroidism that has the major humoral and histological features of Graves disease: stimulating TSHR antibodies, thyrotropin binding inhibiting immunoglobulins, which are different from the stimulating TSHR antibodies, increased thyroid hormone levels, thyroid enlargement, thyrocyte hypercellularity, and thyrocyte intrusion into the follicular lumen. The results suggest that the aberrant expression of major histocompatibility complex class II molecules on cells that express a native form of the TSHR can result in the induction of functional anti-TSHR antibodies that stimulate the thyroid. They additionally suggest that the acquisition of antigen-presenting ability on a target cell containing the TSHR can activate T and B cells normally present in an animal and induce a disease with the major features of autoimmune Graves.
Resumo:
Transcription factor CREM (cAMP-responsive element modulator) plays a pivotal role in the nuclear response to cAMP in neuroendocrine cells. We have previously shown that follicle-stimulating hormone (FSH) directs CREM expression in male germ cells. The physiological importance of FSH in Sertoli cell function prompted us to analyze its effect on CREM expression in these cells. We observed a dramatic and specific increase in the CREM isoform ICER (inducible cAMP early repressor) expression, with a peak 4 h after FSH treatment of primary Sertoli cells. Interestingly, induced levels of ICER protein persist for a considerably longer time. Induction of the repressor ICER accompanies early down-regulation of the FSH receptor transcript, which leads to long-term desensitization. Here we show that ICER represses FSH receptor expression by binding to a CRE-like sequence in the regulatory region of the gene. Our results confirm the crucial role played by CREM in hormonal control and suggest its role in the long-term desensitization phenomenon of peptide membrane receptors.