52 resultados para homologous

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Drosophila retinal degeneration C (rdgC) gene encodes an unusual protein serine/threonine phosphatase in that it contains at least two EF-hand motifs at its carboxy terminus. By a combination of large-scale sequencing of human retina cDNA clones and searches of expressed sequence tag and genomic DNA databases, we have identified two sequences in mammals [Protein Phosphatase with EF-hands-1 and 2 (PPEF-1 and PPEF-2)] and one in Caenorhabditis elegans (PPEF) that closely resemble rdgC. In the adult, PPEF-2 is expressed specifically in retinal rod photoreceptors and the pineal. In the retina, several isoforms of PPEF-2 are predicted to arise from differential splicing. The isoform that most closely resembles rdgC is localized to rod inner segments. Together with the recently described localization of PPEF-1 transcripts to primary somatosensory neurons and inner ear cells in the developing mouse, these data suggest that the PPEF family of protein serine/threonine phosphatases plays a specific and conserved role in diverse sensory neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination contributes both to the generation of allelic diversity and to the preservation of genetic information. In plants, a lack of suitable experimental material has prevented studies of the regulatory and enzymatic aspects of recombination in somatic and meiotic cells. We have isolated nine Arabidopsis thaliana mutants hypersensitive to x-ray irradiation (xrs) and examined their recombination properties. For the three xrs loci described here, single recessive mutations were found to confer simultaneous hypersensitivities to the DNA-damaging chemicals mitomycin C (MMCs) and/or methyl methanesulfonate (MMSs) and alterations in homologous recombination. Mutant xrs9 (Xrays, MMSs) is reduced in both somatic and meiotic recombination and resembles yeast mutants of the rad52 epistatic group. xrs11 (Xrays, MMCs) is deficient in the x-ray-mediated stimulation of homologous recombination in somatic cells in a manner suggesting a specific signaling defect. xrs4 (Xrays, MMSs, MMCs) has a significant deficiency in somatic recombination, but this is accompanied by meiotic hyper-recombination. A corresponding phenotype has not been reported in other systems and thus this indicates a novel, plant-specific regulatory circuit linking mitotic and meiotic recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With only two different cell types, the haploid green alga Volvox represents the simplest multicellular model system. To facilitate genetic investigations in this organism, the occurrence of homologous recombination events was investigated with the intent of developing methods for gene replacement and gene disruption. First, homologous recombination between two plasmids was demonstrated by using overlapping nonfunctional fragments of a recombinant arylsulfatase gene (tubulin promoter/arylsulfatase gene). After bombardment of Volvox reproductive cells with DNA-coated gold microprojectiles, transformants expressing arylsulfatase constitutively were recovered, indicating the presence of the machinery for homologous recombination in Volvox. Second, a well characterized loss-of-function mutation in the nuclear nitrate reductase gene (nitA) with a single G → A nucleotide exchange in a 5′-splice site was chosen as a target for gene replacement. Gene replacement by homologous recombination was observed with a reasonably high frequency only if the replacement vector containing parts of the functional nitrate reductase gene contained only a few nucleotide exchanges. The ratio of homologous to random integration events ranged between 1:10 and 1:50, i.e., homologous recombination occurs frequently enough in Volvox to apply the powerful tool of gene disruption for functional studies of novel genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axonal guidance is key to the formation of neuronal circuitry. Semaphorin 3A (Sema 3A; previously known as semaphorin III, semaphorin D, and collapsin-1), a secreted subtype of the semaphorin family, is an important axonal guidance molecule in vitro and in vivo. The molecular mechanisms of the repellent activity of semaphorins are, however, poorly understood. We have now found that the secreted semaphorins contain a short sequence of high homology to hanatoxin, a tarantula K+ and Ca2+ ion channel blocker. Point mutations in the hanatoxin-like sequence of Sema 3A reduce its capacity to repel embryonic dorsal root ganglion axons. Sema 3A growth cone collapse activity is inhibited by hanatoxin, general Ca2+ channel blockers, a reduction in extracellular or intracellular Ca2+, and a calmodulin inhibitor, but not by K+ channel blockers. Our data support an important role for Ca2+ in mediating the Sema 3A response and suggest that Sema 3A may produce its effects by causing the opening of Ca2+ channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the well-established role of neurohypophysial hormones in osmoregulation of terrestrial vertebrates, lungfishes are a key group for study of the molecular and functional evolution of the hypothalamo-neurohypophysial system. Here we report on the primary structure of the precursors encoding vasotocin (VT) and [Phe2]mesotocin ([Phe2]MT) of the Australian lungfish, Neoceratodus forsteri. Genomic sequence analysis and Northern blot analysis confirmed that [Phe2]MT is a native oxytocin family peptide in the Australian lungfish, although it has been reported that the lungfish neurohypophysis contains MT. The VT precursor consists of a signal peptide, VT, that is connected to a neurophysin by a Gly-Lys-Arg sequence, and a copeptin moiety that includes a Leu-rich core segment and a glycosylation site. In contrast, the [Phe2]MT precursor does not contain a copeptin moiety. These structural features of the lungfish precursors are consistent with those in tetrapods, but different from those in teleosts where both VT and isotocin precursors contain a copeptin-like moiety without a glycosylation site at the carboxyl terminals of their neurophysins. Comparison of the exon/intron organization also supports homology of the lungfish [Phe2]MT gene with tetrapod oxytocin/MT genes, rather than with teleost isotocin genes. Moreover, molecular phylogenetic analysis shows that neurohypophysial hormone genes of the lungfish are closely related to those of the toad. The present results along with previous morphological findings indicate that the hypothalamo-neurohypophysial system of the lungfish has evolved along the tetrapod lineage, whereas the teleosts form a separate lineage, both within the class Osteichthyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

cDNA clones encoding a novel protein (VAMP5) homologous to synaptobrevins/VAMPs are detected during database searches. The predicted 102–amino acid VAMP5 harbors a 23-residue hydrophobic region near the carboxyl terminus and exhibits an overall amino acid identity of 33% with synaptobrevin/VAMP1 and 2 and cellubrevin. Northern blot analysis reveals that the mRNA for VAMP5 is preferentially expressed in the skeletal muscle and heart, whereas significantly lower levels are detected in several other tissues but not in the brain. During in vitro differentiation (myogenesis) of C2C12 myoblasts into myotubes, the mRNA level for VAMP5 is increased ∼8- to 10-fold. Immunoblot analysis using antibodies specific for VAMP5 shows that the protein levels are also elevated ∼6-fold during in vitro myogenesis of C2C12 cells. Indirect immunofluorescence microscopy and immunoelectron microscopy reveal that VAMP5 is associated with the plasma membrane as well as intracellular perinuclear and peripheral vesicular structures of myotubes. Epitope-tagged versions of VAMP5 are similarly targeted to the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fission yeast pob1 gene encodes a protein of 871 amino acids carrying an SH3 domain, a SAM domain, and a PH domain. Gene disruption and construction of a temperature-sensitive pob1 mutant indicated that pob1 is essential for cell growth. Loss of its function leads to quick cessation of cellular elongation. Pob1p is homologous to two functionally redundant Saccharomyces cerevisiae proteins, Boi1p and Boi2p, which are necessary for cell growth and relevant to bud formation. Overexpression of pob1 inhibits cell growth, causing the host cells to become round and swollen. In growing cells, Pob1p locates at cell tips during interphase and translocates near the division plane at cytokinesis. Thus, this protein exhibits intracellular dynamics similar to F-actin patches. However, Pob1p constitutes a layer, rather than patches, at growing cell tips. It generates two split discs flanking the septum at cytokinesis. The pob1-defective cells no longer elongate but swell gradually at the middle, eventually assuming a lemon-like morphology. Analysis using the pob1-ts allele revealed that Pob1p is also essential for cell separation. We speculate that Pob1p is located on growing plasma membrane, possibly through the function of actin patches, and may recruit proteins required for the synthesis of cell wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The τ and γ subunits of DNA polymerase III are both encoded by a single gene in Escherichia coli and Thermus thermophilus. γ is two-thirds the size of τ and shares virtually all its amino acid sequence with τ. E. coli and T. thermophilus have evolved very different mechanisms for setting the approximate 1:1 ratio between τ and γ. Both mechanisms put ribosomes into alternate reading frames so that stop codons in the new frame serve to make the smaller γ protein. In E. coli, ≈50% of initiating ribosomes translate the dnaX mRNA conventionally to give τ, but the other 50% shift into the −1 reading frame at a specific site (A AAA AAG) in the mRNA to produce γ. In T. thermophilus ribosomal frameshifting is not required: the dnaX mRNA is a heterogeneous population of molecules with different numbers of A residues arising from transcriptional slippage on a run of nine T residues in the DNA template. Translation of the subpopulation containing nine As (or +/− multiples of three As) yields τ. The rest of the population of mRNAs (containing nine +/− nonmultiples of three As) puts ribosomes into the alternate reading frames to produce the γ protein(s). It is surprising that two rather similar dnaX sequences in E. coli and T. thermophilus lead to very different mechanisms of expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants are continuously subjected to UV-B radiation (UV-B; 280–320 nm) as a component of sunlight causing damage to the genome. For elimination of DNA damage, a set of repair mechanisms, mainly photoreactivation, excision, and recombination repair, has evolved. Whereas photoreactivation and excision repair have been intensely studied during the last few years, recombination repair, its regulation, and its interrelationship with photoreactivation in response to UV-B-induced DNA damage is still poorly understood. In this study, we analyzed somatic homologous recombination in a transgenic Arabidopsis line carrying a β-glucuronidase gene as a recombination marker and in offsprings of crosses of this line with a photolyase deficient uvr2–1 mutant. UV-B radiation stimulated recombination frequencies in a dose-dependent manner correlating linearly with cyclobutane pyrimidine dimer (CPD) levels. Genetic deficiency for CPD-specific photoreactivation resulted in a drastic increase of recombination events, indicating that homologous recombination might be directly involved in eliminating CPD damage. UV-B irradiation stimulated recombination mainly in the presence of photosynthetic active radiation (400–700 nm) irrespective of photolyase activities. Our results suggest that UV-B-induced recombination processes may depend on energy supply derived from photosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using elastic measurements on single DNA molecules, we show that stretching a negatively supercoiled DNA activates homologous pairing in physiological conditions. These experiments indicate that a stretched unwound DNA locally denatures to alleviate the force-driven increase in torsional stress. This is detected by hybridization with 1 kb of homologous single-stranded DNA probes. The stretching force involved (≈2 pN) is small compared with those typically developed by molecular motors, suggesting that this process may be relevant to DNA processing in vivo. We used this technique to monitor the progressive denaturation of DNA as it is unwound and found that distinct, stable denaturation bubbles formed, beginning in A+T-rich regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a method which allows the isolation of fragments from genes coding for homologous proteins via PCR when only one block of conserved amino acids is available. Sets of degenerated primers are defined by reverse translation of the conserved amino acids such that each set contains not more than 128 different sequences. The second primer binding site is provided by a special cassette that is designed such that it does not allow binding of the second primer prior to being copied by DNA synthesis. The cassette is ligated to partially-digested chromosomal DNA. The second primer is biotinylated to allow elimination of PCR products carrying degenerated primers on both sides via streptavidin binding. Fragments obtained after amplification and enrichment are cloned and sequenced. The feasibility of this method was demonstrated in a model experiment, where degenerated primers were deduced from six conserved amino acids within the family of homologs to the Escherichia coli Vsr protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PALI (release 1.2) contains three-dimensional (3-D) structure-dependent sequence alignments as well as structure-based phylogenetic trees of homologous protein domains in various families. The data set of homologous protein structures has been derived by consulting the SCOP database (release 1.50) and the data set comprises 604 families of homologous proteins involving 2739 protein domain structures with each family made up of at least two members. Each member in a family has been structurally aligned with every other member in the same family (pairwise alignment) and all the members in the family are also aligned using simultaneous super­position (multiple alignment). The structural alignments are performed largely automatically, with manual interventions especially in the cases of distantly related proteins, using the program STAMP (version 4.2). Every family is also associated with two dendrograms, calculated using PHYLIP (version 3.5), one based on a structural dissimilarity metric defined for every pairwise alignment and the other based on similarity of topologically equivalent residues. These dendrograms enable easy comparison of sequence and structure-based relationships among the members in a family. Structure-based alignments with the details of structural and sequence similarities, superposed coordinate sets and dendrograms can be accessed conveniently using a web interface. The database can be queried for protein pairs with sequence or structural similarities falling within a specified range. Thus PALI forms a useful resource to help in analysing the relationship between sequence and structure variation at a given level of sequence similarity. PALI also contains over 653 ‘orphans’ (single member families). Using the web interface involving PSI_BLAST and PHYLIP it is possible to associate the sequence of a new protein with one of the families in PALI and generate a phylogenetic tree combining the query sequence and proteins of known 3-D structure. The database with the web interfaced search and dendrogram generation tools can be accessed at http://pa uling.mbu.iisc.ernet.in/~pali.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RAD51 protein has been shown to participate in homologous recombination by promoting ATP-dependent homologous pairing and strand transfer reactions. In the present study, we have investigated the possible involvement of RAD51 in non-homologous recombination. We demonstrate that overexpression of CgRAD51 enhances the frequency of spontaneous non-homologous recombination in the hprt gene of Chinese hamster cells. However, the rate of non-homologous recombination induced by the topoisomerase inhibitors campothecin and etoposide was not altered by overexpression of RAD51. These results indicate that the RAD51 protein may perform a function in connection with spontaneous non-homologous recombination that is not essential to or not rate-limiting for non-homologous recombination induced by camptothecin or etoposide. We discuss the possibility that the role played by RAD51 in non-homologous recombination observed here may not be linked to non-homologous end-joining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial artificial chromosomes (BACs) and P1 artificial chromosomes (PACs), which contain large fragments of genomic DNA, have been successfully used as transgenes to create mouse models of dose-dependent diseases. They are also potentially valuable as transgenes for dominant diseases given that point mutations and/or small rearrangements can be accurately introduced. Here, we describe a new method to introduce small alterations in BACs, which results in the generation of point mutations with high frequency. The method involves homologous recombination between the original BAC and a shuttle vector providing the mutation. Each recombination step is monitored using positive and negative selection markers, which are the Kanamycin-resistance gene, the sacB gene and temperature-sensitive replication, all conferred by the shuttle plasmid. We have used this method to introduce four different point mutations and the insertion of the β-galactosidase gene in a BAC, which has subsequently been used for transgenic animal production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We developed a method for the reconstruction of a 100 kb DNA fragment into a bacterial artificial chromosome (BAC). The procedure makes use of iterative rounds of homologous recombination in Escherichia coli. Smaller, overlapping fragments of cloned DNA, such as cosmid clones, are required. They are transferred first into a temperature-sensitive replicon and then into the BAC of choice. We demonstrated the usefulness of this procedure by assembling a 90 kb genomic segment into an E.coli–Streptomyces artificial chromosome (ESAC). Using this procedure, ESACs are easy to handle and remarkably more stable than the starting cosmids.