8 resultados para high yield
em National Center for Biotechnology Information - NCBI
Resumo:
A convenient, high yield conversion of doxorubicin to 3'-deamino-3'-(2''-pyrroline-1''-yl)doxorubicin is described. This daunosamine-modified analog of doxorubicin is 500-1000 times more active in vitro than doxorubicin. The conversion is effected by using a 30-fold excess of 4-iodobutyraldehyde in anhydrous dimethylformamide. The yield is higher than 85%. A homolog of this compound, 3'-deamino-3'-(1'',3''-tetrahydropyridine-1''-yl)doxorubicin, was also synthesized by using 5-iodovaleraldehyde. In this homolog, the daunosamine nitrogen is incorporated into a six- instead of a five-membered ring. This analog was 30-50 times less active than its counterpart with a five-membered ring. A similar structure-activity relationship was found when 3'-deamino-3'-(3''-pyrrolidone-1''-yl)doxorubicin (containing a five-membered ring) and 3'-deamino-3'-(3''-piperidone-1''-yl)doxorubicin (with a six-membered ring) were tested in vitro, the former being 5 times more potent than the latter. To further elucidate structure-activity relationships, 3'-deamino-3'-(pyrrolidine-1''-yl)doxorubicin, 3'-deamino-3'-(isoindoline-2''-yl)doxorubicin, 3'-deamino-3'-(2''-methyl-2''-pyrroline-1''-yl)doxorubicin, and 3'-deamino-3'-(3''-pyrroline-1''-yl)doxorubicin were also synthesized and tested. All the analogs were prepared by using reactive halogen compounds for incorporating the daunosamine nitrogen of doxorubicin into a five- or six-membered ring. These highly active antineoplastic agents can be used for incorporation into targeted cytotoxic analogs of luteinizing hormone-releasing hormone intended for cancer therapy.
Resumo:
According to Khan et al. [Khan, A. U., Kovacic, D., Kolbanovskiy, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], peroxynitrite (ONOO−) decomposes after protonation to singlet oxygen (1ΔgO2) and singlet oxonitrate (nitroxyl, 1NO−) in high yield. They claimed to have observed nitrosyl hemoglobin from the reaction of NO− with methemoglobin; however, contamination with hydrogen peroxide gave rise to ferryl hemoglobin, the spectrum of which was mistakenly assigned to nitrosyl hemoglobin. We have carried out UV–visible and EPR experiments with methemoglobin and hydrogen peroxide-free peroxynitrite and find that no NO− is formed. With this peroxynitrite preparation, no light emission from singlet oxygen at 1270 nm is observed, nor is singlet oxygen chemically trapped; however, singlet oxygen was trapped when hydrogen peroxide was also present, as previously described [Di Mascio, P., Bechara, E. J. H., Medeiros, M. H. G., Briviba, K. & Sies, H. (1994) FEBS Lett. 355, 287–289]. Quantum mechanical and thermodynamic calculations show that formation of the postulated intermediate, a cyclic form of peroxynitrous acid (trioxazetidine), and the products 1NO− and 1ΔgO2 requires Gibbs energies of ca. +415 kJ⋅mol−1 and ca. +180 kJ⋅mol−1, respectively. Our results show that the results of Khan et al. are best explained by interference from contaminating hydrogen peroxide left from the synthesis of peroxynitrite.
Resumo:
We report here a rapid evaporation method that produces in high yield giant unilamellar vesicles up to 50 microns in diameter. The vesicles are obtained after only 2 min and can be prepared from different phospholipids, including L-alpha-phosphatidylcholine (lecithin), dipalmitoleoyl L-alpha-phosphatidylcholine, and beta-arachidonoyl gamma-palmitoyl L-alpha-phosphatidylcholine. Vesicles can be produced in distilled water and in Hepes, phosphate, and borate buffers in the pH range of 7.0 to 11.5 with ionic strengths up to 50 mM. The short preparation time allows encapsulation of labile molecular targets or enzymes with high catalytic activities. Cell-sized proteoliposomes have been prepared in which gamma-glutamyltransferase (EC 2.3.2.2) was functionally incorporated into the membrane wall.
Resumo:
cGMP phosphodiesterase (PDE) is the key effector enzyme of vertebrate photoreceptor cells that regulates the level of the second messenger, cGMP. PDE consists of catalytic alpha and beta subunits (Palpha and Pbeta) and two inhibitory gamma subunits (Pgamma) that block PDE activity in the dark. The major inhibitory region has been localized to the C terminus of Pgamma. The last C-terminal residues -IleIle form an important hydrophobic domain critical for the inhibition of PDE activity. In this study, mutants of Pgamma were designed for cross-linking experiments to identify regions on Palpha and Pbeta subunits that bind to the Pgamma C terminus. In one of the mutants, the cysteine at position 68 was substituted with serine, and the last four C-terminal residues of Pgamma were replaced with a single cysteine. This mutant, Pgamma83Cys, was labeled with photoprobe 4-(N-maleimido) benzophenone (MBP) at the cysteine residue. The labeled Pgamma83CysMBP mutant was a more potent inhibitor of PDE activity than the unlabeled mutant, indicating that the hydrophobic MBP probe mimics the Pgamma hydrophobic C terminus. A specific, high-yield cross-linking of up to 70% was achieved between the Pgamma83CysMBP and PDE catalytic subunits. Palpha and the N-terminally truncated Pbeta (lacking 147 aa residues) cross-linked to Pgamma83CysMBP with the same efficiency. Using mass spectrometric analysis of tryptic fragments from the cross-linked PDE, we identified the site of cross-linking to aa residues 751-763 of Palpha. The corresponding region of Pbeta, Pbeta-749-761, also may bind to the Pgamma C terminus. Our data suggest that Pgamma blocks PDE activity through the binding to the catalytic site of PDE, near the NKXD motif, a consensus sequence for interaction with the guanine ring of cGMP.
Resumo:
High hydrostatic pressures (1–2 kbar), combined with low, nondenaturing concentrations of guanidine hydrochloride (GdmHCl) foster disaggregation and refolding of denatured and aggregated human growth hormone and lysozyme, and β-lactamase inclusion bodies. One hundred percent recovery of properly folded protein can be obtained by applying pressures of 2 kbar to suspensions containing aggregates of recombinant human growth hormone (up to 8.7 mg/ml) and 0.75 M GdmHCl. Covalently crosslinked, insoluble aggregates of lysozyme could be refolded to native, functional protein at a 70% yield, independent of protein concentration up to 2 mg/ml. Inclusion bodies containing β-lactamase could be refolded at high yields of active protein, even without added GdmHCl.
Resumo:
Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70–80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.
Resumo:
High-dynamic range imaging and monitoring with very-long-baseline interferometry reveal a rich morphology of luminous flat-spectrum radio sources. One-sided core-jet structures abound, and superluminal motion is frequently measured. In a few cases, both distinct moving features and diffuse underlying jet emission can be detected. Superluminal motion seen in such sources is typically complex, on curved trajectories or ridge lines, and with variable component velocities, including stationary features. The curved trajectories seen can be modeled by helical motion within the underlying jet flow. The very-long-baseline interferometry properties of the superluminal features in the jet of 3C 345 and other similar sources can be explained by models invoking the emission from shocks, at least within the vicinity of the compact core. Inverse-Compton calculations, constrained by x-ray observations, yield realistic estimates for the physical conditions in the parsec-scale jet. There is evidence for a transition region in this source beyond which other factors (e.g., plasma interactions and nonsynchrotron radiation processes) may become prominent. Multifrequency and polarization imaging (especially at high frequencies) are emerging as critical tools in testing model predictions.
Resumo:
Amino acid sequencing by recombinant DNA technology, although dramatically useful, is subject to base reading errors, is indirect, and is insensitive to posttranslational processing. Mass spectrometry techniques can provide molecular weight data from even relatively large proteins for such cDNA sequences and can serve as a check of an enzyme's purity and sequence integrity. Multiply-charged ions from electrospray ionization can be dissociated to yield structural information by tandem mass spectrometry, providing a second method for gaining additional confidence in primary sequence confirmation. Here, accurate (+/- 1 Da) molecular weight and molecular ion dissociation information for human muscle and brain creatine kinases has been obtained by electrospray ionization coupled with Fourier-transform mass spectrometry to help distinguish which of several published amino acid sequences for both enzymes are correct. The results herein are consistent with one published sequence for each isozyme, and the heterogeneity indicated by isoelectric focusing due to 1-Da deamidation changes. This approach appears generally useful for detailed sequence verification of recombinant proteins.