3 resultados para heterologous model

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmissible spongiform encephalopathies, or prion diseases, are fatal degenerative disorders of the central nervous system that affect humans and animals. Prions are nonconventional infectious agents whose replication depends on the host prion protein (PrP). Transmission of prions to cultured cells has proved to be a particularly difficult task, and with a few exceptions, their experimental propagation relies on inoculation to laboratory animals. Here, we report on the development of a permanent cell line supporting propagation of natural sheep scrapie. This model was obtained by stable expression of a tetracycline-regulatable ovine PrP gene in a rabbit epithelial cell line. After exposure to scrapie agent, cultures were repeatedly found to accumulate high levels of abnormal PrP (PrPres). Cell extracts induced a scrapie-like disease in transgenic mice overexpressing ovine PrP. These cultures remained healthy and stably infected upon subpassaging. Such data show that (i) cultivated cells from a nonneuronal origin can efficiently replicate prions; and (ii) species barrier can be crossed ex vivo through the expression of a relevant PrP gene. This approach led to the ex vivo propagation of a natural transmissible spongiform encephalopathy agent (i.e., without previous experimental adaptation to rodents) and might be applied to human or bovine prions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinational repair of double-stranded DNA gaps was investigated in Ustilago maydis. The experimental system was designed for analysis of repair of an autonomously replicating plasmid containing a cloned gene disabled by an internal deletion. It was discovered that crossing over rarely accompanied gap repair. The strong bias against crossing over was observed in three different genes regardless of gap size. These results indicate that gap repair in U. maydis is unlikely to proceed by the mechanism envisioned in the double-stranded break repair model of recombination, which was developed to account for recombination in Saccharomyces cerevisiae. Experiments aimed at exploring processing of DNA ends were performed to gain understanding of the mechanism responsible for the observed bias. A heterologous insert placed within a gap in the coding sequence of two different marker genes strongly inhibited repair if the DNA was cleaved at the promoter-proximal junction joining the insert and coding sequence but had little effect on repair if the DNA was cleaved at the promoter-distal junction. Gene conversion of plasmid restriction fragment length polymorphism markers engineered in sequences flanking both sides of a gap accompanied repair but was directionally biased. These results are interpreted to mean that the DNA ends flanking a gap are subject to different types of processing. A model featuring a single migrating D-loop is proposed to explain the bias in gap repair outcome based on the observed asymmetry in processing the DNA ends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pathogenic role for self-reactive cells against the stress protein Hsp60 has been proposed as one of the events leading to autoimmune destruction of pancreatic beta cells in the diabetes of nonobese diabetic (NOD) mice. To examine this hypothesis, we generated transgenic NOD mice carrying a murine Hsp60 transgene driven by the H-2E alpha class II promoter. This would be expected to direct expression of the transgene to antigen-presenting cells including those in the thymus and so induce immunological tolerance by deletion. Detailed analysis of Hsp60 expression revealed that the endogenous gene is itself expressed strongly in thymic medullary epithelium (and weakly in cortex) yet fails to induce tolerance. Transgenic mice with retargeted Hsp60 showed overexpression of the gene in thymic cortical epithelium and in bone marrow-derived cells. Analysis of spontaneous T-cell responses to a panel of self and heterologous Hsp60 antigens showed that tolerance to the protein had not been induced, although responses to an immunodominant 437-460 epitope implicated in disease were suppressed, probably indicating an epitope shift. This correlated with changes in disease susceptibility: insulitis in transgenic mice was substantially reduced so that pathology rarely progressed beyond periislet infiltration. This was reflected in a substantial reduction in hyperglycemia and disease. These data indicate that T cells specific for some epitopes of murine Hsp60 are likely to be involved in the islet-cell destruction that occurs in NOD mice.