26 resultados para heterogeneity of effects

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal muscular atrophy is caused by defects in the survival motor neuron (SMN) gene. To better understand the patterns of expression of SMN in neuronal cells and tissues, we raised a polyclonal antibody (abSMN) against a synthetic oligopeptide from SMN exon 2. AbSMN immunostaining in neuroblastoma cells and mouse and human central nervous system (CNS) showed intense labeling of nuclear “gems,” along with prominent nucleolar immunoreactivity in mouse and human CNS tissues. Strong cytoplasmic labeling was observed in the perikarya and proximal dendrites of human spinal motor neurons but not in their axons. Immunoblot analysis revealed a 34-kDa species in the insoluble protein fractions from human SY5Y neuroblastoma cells, embryonic mouse spinal cord cultures, and human CNS tissue. By contrast, a 38-kDa species was detected in the cytosolic fraction of SY5Y cells. We conclude that SMN protein is expressed prominently in both the cytoplasm and nucleus in multiple types of neurons in brain and spinal cord, a finding consistent with a role for SMN as a determinant of neuronal viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural developmental gradient of light-grown primary leaves of barley (Hordeum vulgare L.) was used to analyze the biogenesis of mitochondrial proteins in relation to the age and physiological changes within the leaf. The data indicate that the protein composition of mitochondria changes markedly during leaf development. Three distinct patterns of protein development were noted: group A proteins, consisting of the E1 β-subunit of the pyruvate dehydrogenase complex, ORF156, ORF577, alternative oxidase, RPS12, cytochrome oxidase subunits II and III, malic enzyme, and the α- and β-subunits of F1-ATPase; group B proteins, consisting of the E1 α-subunit of the pyruvate dehydrogenase complex, isocitrate dehydrogenase, HSP70A, cpn60C, and cpn60B; and group C proteins, consisting of the four subunits of the glycine decarboxylase complex (P, H, T, and L proteins), fumarase, and formate dehydrogenase. All of the proteins increased in concentration from the basal meristem to the end of the elongation zone (20.0 mm from the leaf base), whereupon group A proteins decreased, group B proteins increased to a maximum at 50 mm from the leaf base, and group C proteins increased to a maximum at the leaf tip. This study provides evidence of a marked heterogeneity of mitochondrial protein composition, reflecting a changing function as leaf cells develop photosynthetic and photorespiratory capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In PCR, DNA polymerases from thermophilic bacteria catalyze the extension of primers annealed to templates as well as the structure-specific cleavage of the products of primer extension. Here we show that cleavage by Thermus aquaticus and Thermus thermophilus DNA polymerases can be precise and substantial: it occurs at the base of the stem-loop structure assumed by the single strand products of primer extension using as template a common genetic element, the promoter-operator of the Escherichia coli lactose operon, and may involve up to 30% of the products. The cleavage is independent of primer, template, and triphosphates, is dependent on substrate length and temperature, requires free ends and Mg2+, and is absent in DNA polymerases lacking the 5'-->3' exonuclease, such as the Stoffel fragment and the T7 DNA polymerase. Heterogeneity of the extension products results also from premature detachment of the enzyme approaching the 5' end of the template.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed the developmental pattern of beta-galactosidase (beta-gal) expression in the cerebral cortex of the beta 2nZ3'1 transgenic mouse line, which was generated using regulatory elements of the beta 2-microglobulin gene and shows ectopic expression in nervous tissue. From embryonic day 10 onward, beta-gal was expressed in the medial and dorsal cortices, including the hippocampal region, whereas lateral cortical areas were devoid of labeling. During the period of cortical neurogenesis (embryonic days 11-17), beta-gal was expressed by selective precursors in the proliferative ventricular zone of the neocortex and hippocampus, as well as by a number of migrating and postmigratory neurons arranged into narrow radial stripes above the labeled progenitors. Thus, the transgene labels a subset of cortical progenitors and their progeny. Postnatally, radial clusters of beta-gal-positive neurons were discernible until postpartum day 10. At this age, the clusters were 250 to 500 microns wide, composed of neurons spanning all the cortical layers and exhibiting several neuronal phenotypes. These data suggest molecular heterogeneity of cortical progenitors and of the cohorts of postmitotic neurons originating from them, which implies intrinsic molecular mosaicism in both cortical progenitors and developing neurons. Furthermore, the data show that neurons committed to the expression of the transgene migrate along very narrow, radial stripes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recurrent theme in the organization of vertebrate visual cortex is that of receptive fields with an associated "silent" opponency component. In the middle temporal area (area MT), a cortical visual area involved in the analysis of retinal motion in primates, this opponency appears in the form of a region outside the classical receptive field (CRF) that in itself gives no response but suppresses responses to motion evoked within the CRF. This antagonistic motion surround has been described as very large and symmetrically arrayed around the CRF. On the basis of this view, the primary function of the surround has long been thought to consist of simple figure-ground segregation based on movement. We have made use of small stimulus patches to map the form and extent of the surround and find evidence that the surround inhibition of many MT cells is in fact confined to restricted regions on one side or on opposite sides of the CRF. Such regions endow MT cells with the ability to make local-to-local motion comparisons, capable of extracting more complex features from the visual environment, and as such, may be better viewed as intrinsic parts of the receptive field, rather than as separate entities responsible for local-to-global comparisons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explored how two independent variables, one genetic (i.e., specific rat strains) and another environmental (i.e., a developmental excitotoxic hippocampal lesion), contribute to phenotypic variation. Sprague-Dawley (SD), Fischer 344 (F344), and Lewis rats underwent two grades of neonatal excitotoxic damage: small and large ventral hippocampal (SVH and LVH) lesions. Locomotion was tested before puberty [postnatal day 35 (P35)] and after puberty (P56) following exposure to a novel environment or administration of amphetamine. The behavioral effects were strain- and lesion-specific. As shown previously, SD rats with LVH lesions displayed enhanced spontaneous and amphetamine-induced locomotion as compared with controls at P56, but not at P35. SVH lesions in SD rats had no effect at any age. In F344 rats with LVH lesions, enhanced spontaneous and amphetamine-induced locomotion appeared early (P35) and was exaggerated at P56. SVH lesions in F344 rats resulted in a pattern of effects analogous to LVH lesions in SD rats--i.e., postpubertal onset of hyperlocomotion (P56). In Lewis rats, LVH lesions had no significant effect on novelty- or amphetamine-induced locomotion at any age. These data show that the degree of genetic predisposition and the extent of early induced hippocampal defect contribute to the particular pattern of behavioral outcome. These results may have implications for modeling interactions of genetic and environmental factors involved in schizophrenia, a disorder characterized by phenotypic heterogeneity, genetic predisposition, a developmental hippocampal abnormality, and vulnerability to environmental stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed information regarding the contribution of individual γ-aminobutyric acid (GABA)-containing inhibitory neurons to the overall synaptic activity of single postsynaptic cells is essential to our understanding of fundamental elements of synaptic integration and operation of neuronal circuits. For example, GABA-containing cells in the thalamic reticular nucleus (nRt) provide major inhibitory innervation of thalamic relay nuclei that is critical to thalamocortical rhythm generation. To investigate the contribution of individual nRt neurons to the strength of this internuclear inhibition, we obtained whole-cell recordings of unitary inhibitory postsynaptic currents (IPSCs) evoked in ventrobasal thalamocortical (VB) neurons by stimulation of single nRt cells in rat thalamic slices, in conjunction with intracellular biocytin labeling. Two types of monosynaptic IPSCs could be distinguished. “Weak” inhibitory connections were characterized by a significant number of postsynaptic failures in response to presynaptic nRt action potentials and relatively small IPSCs. In contrast, “strong” inhibition was characterized by the absence of postsynaptic failures and significantly larger unitary IPSCs. By using miniature IPSC amplitudes to infer quantal size, we estimated that unitary IPSCs associated with weak inhibition resulted from activation of 1–3 release sites, whereas stronger inhibition would require simultaneous activation of 5–70 release sites. The inhibitory strengths were positively correlated with the density of axonal swellings of the presynaptic nRt neurons, an indicator that characterizes different nRt axonal arborization patterns. These results demonstrate that there is a heterogeneity of inhibitory interactions between nRt and VB neurons, and that variations in gross morphological features of axonal arbors in the central nervous system can be associated with significant differences in postsynaptic response characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-molecule studies of the conformations of the intact β2 adrenergic receptor were performed in solution. Photon bursts from the fluorescently tagged adrenergic receptor in a micelle were recorded. A photon-burst algorithm and a Poisson time filter were implemented to characterize single molecules diffusing across the probe volume of a confocal microscope. The effects of molecular diffusion and photon number fluctuations were deconvoluted by assuming that Poisson distributions characterize the molecular occupation and photon numbers. Photon-burst size histograms were constructed, from which the source intensity distributions were extracted. Different conformations of the β2 adrenergic receptor cause quenching of the bound fluorophore to different extents and hence produce different photon-burst sizes. An analysis of the photon-burst histograms shows that there are at least two distinct substates for the native adrenergic membrane receptor. This behavior is in contrast to one peak observed for the dye molecule, rhodamine 6G. We test the reliability and robustness of the substate number determination by investigating the application of different binning criteria. Conformational changes associated with agonist binding result in a marked change in the distribution of photon-burst sizes. These studies provide insight into the conformational heterogeneity of G protein-coupled receptors in the presence and absence of a bound agonist.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heparinase I from Flavobacterium heparinum has important uses for elucidating the complex sequence heterogeneity of heparin-like glycosaminoglycans (HLGAGs). Understanding the biological function of HLGAGs has been impaired by the limited methods for analysis of pure or mixed oligosaccharide fragments. Here, we use methodologies involving MS and capillary electrophoresis to investigate the sequence of events during heparinase I depolymerization of HLGAGs. In an initial step, heparinase I preferentially cleaves exolytically at the nonreducing terminal linkage of the HLGAG chain, although it also cleaves internal linkages at a detectable rate. In a second step, heparinase I has a strong preference for cleaving the same substrate molecule processively, i.e., to cleave the next site toward the reducing end of the HLGAG chain. Computer simulation showed that the experimental results presented here from analysis of oligosaccharide degradation were consistent with literature data for degradation of polymeric HLGAG by heparinase I. This study presents direct evidence for a predominantly exolytic and processive mechanism of depolymerization of HLGAG by heparinase I.