11 resultados para hemorrhagic virus of grass carp (GCHV)

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poxviruses employ many strategies to evade and neutralize the host immune response. In this study, we have identified two vaccinia virus ORFs, termed A46R and A52R, that share amino acid sequence similarity with the Toll/IL-1 receptor (TIR) domain, a motif that defines the IL-1/Toll-like receptor (TLR) superfamily of receptors, which have a key role in innate immunity and inflammation. When expressed in mammalian cells, the protein products of both ORFs were shown to interfere specifically with IL-1 signal transduction. A46R partially inhibited IL-1-mediated activation of the transcription factor NFκB, and A52R potently blocked both IL-1- and TLR4-mediated NFκB activation. MyD88 is a TIR domain-containing adapter molecule known to have a central role in both IL-1 and TLR4 signaling. A52R mimicked the dominant-negative effect of a truncated version of MyD88 on IL-1, TLR4, and IL-18 signaling but had no effect on MyD88-independent signaling pathways. Therefore, A46R and A52R are likely to represent a mechanism used by vaccinia virus of suppressing TIR domain-dependent intracellular signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA and ribonuclease-resistant RNA analogs that bound and neutralized Rous sarcoma virus (RSV) were isolated from a large pool of random sequences by multiple cycles of in vitro selection using infectious viral particles. The selected RNA pool of RSV-binding sequences at a concentration of 0.16 microM completely neutralized the virus. Of 19 sequences cloned from the selected pool, 5 inhibited RSV infection. The selected RNA and RNA analogs were shown to neutralize RSV by interacting with the virus, rather than by adversely affecting the host cells. The selection of the anti-RSV RNA and RNA analogs by intact virions immediately suggests the potential application of this approach to develop RNA and RNA analogs as inhibitors of other viruses such as human immunodeficiency virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that insert between genes. These retroelements are less abundant in smaller genome plants, including rice and sorghum. Although 5- to 200-kb blocks of methylated, presumably heterochromatic, retrotransposons flank most maize genes, rice and sorghum genes are often adjacent. Similar genes are commonly found in the same relative chromosomal locations and orientations in each of these three species, although there are numerous exceptions to this collinearity (i.e., rearrangements) that can be detected at the levels of both the recombinational map and cloned DNA. Evolutionarily conserved sequences are largely confined to genes and their regulatory elements. Our results indicate that a knowledge of grass genome structure will be a useful tool for gene discovery and isolation, but the general rules and biological significance of grass genome organization remain to be determined. Moreover, the nature and frequency of exceptions to the general patterns of grass genome structure and collinearity are still largely unknown and will require extensive further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA viruses are excellent experimental models for studying evolution under the theoretical framework of population genetics. For a proper justification of this thesis we have introduced some properties of RNA viruses that are relevant for studying evolution. On the other hand, population genetics is a reductionistic theory of evolution. It does not consider or make simplistic assumptions on the transformation laws within and between genotypic and phenotypic spaces. However, such laws are minimized in the case of RNA viruses because the phenotypic space maps onto the genotypic space in a much more linear way than on higher DNA-based organisms. Under experimental conditions, we have tested the role of deleterious and beneficial mutations in the degree of adaptation of vesicular stomatitis virus (VSV), a nonsegmented virus of negative strand. We also have studied how effective population size, initial genetic variability in populations, and environmental heterogeneity shapes the impact of mutations in the evolution of vesicular stomatitis virus. Finally, in an integrative attempt, we discuss pros and cons of the quasispecies theory compared with classic population genetics models for haploid organisms to explain the evolution of RNA viruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of a human breast cancer cell line (MDA-MB-435) in nude mice with a recombinant adenovirus containing the human interferon (IFN) consensus gene, IFN-con1 (ad5/IFN), resulted in tumor regression in 100% of the animals. Tumor regression occurred when virus was injected either within 24 hr of tumor cell implantation or with established tumors. However, regression of the tumor was also observed in controls in which either the wild-type virus or a recombinant virus containing the luciferase gene was used, although tumor growth was not completely suppressed. Tumor regression was accompanied by a decrease in p53 expression. Two other tumors, the human myelogenous leukemic cell line K562 and the hamster melanoma tumor RPMI 1846, also responded to treatment but only with ad5/IFN. In the case of K562 tumors, there was complete regression of the tumor, and tumors derived from RPMI 1846 showed partial regression. We propose that the complete regression of the breast cancer with the recombinant virus ad5/IFN was the result of two events: viral oncolysis in which tumor cells are being selectively lysed by the replication-competent virus and the enhanced effect of expression of the IFN-con1 gene. K562 and RPMI 1846 tumors regressed only as a result of IFN gene therapy. This was confirmed by in vitro analysis. Our results indicate that a combination of viral oncolysis with a virus of low pathogenicity, itself resistant to the effects of IFN and IFN gene therapy, might be a fruitful approach to the treatment of a variety of different tumors, in particular breast cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthetic peptides DP-107 and DP-178 (T-20), derived from separate domains within the human immunodeficiency virus type 1 (HIV-1) transmembrane (TM) protein, gp4l, are stable and potent inhibitors of HIV-1 infection and fusion. Using a computer searching strategy (computerized antiviral searching technology, C.A.S.T.) based on the predicted secondary structure of DP-107 and DP-178 (T-20), we have identified conserved heptad repeat domains analogous to the DP-107 and DP-178 regions of HIV-1 gp41 within the glycoproteins of other fusogenic viruses. Here we report on antiviral peptides derived from three representative paramyxoviruses, respiratory syncytial virus (RSV), human parainfluenza virus type 3 (HPIV-3), and measles virus (MV). We screened crude preparations of synthetic 35-residue peptides, scanning the DP-178-like domains, in antiviral assays. Peptide preparations demonstrating antiviral activity were purified and tested for their ability to block syncytium formation. Representative DP-178-like peptides from each paramyxovirus blocked homologous virus-mediated syncytium formation and exhibited EC50 values in the range 0.015-0.250 microM. Moreover, these peptides were highly selective for the virus of origin. Identification of biologically active peptides derived from domains within paramyxovirus F1 proteins analogous to the DP-178 domain of HIV-1 gp4l is compelling evidence for equivalent structural and functional features between retroviral and paramyxoviral fusion proteins. These antiviral peptides provide a novel approach to the development of targeted therapies for paramyxovirus infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Representational difference analysis was used to search for pathogens in multiple sclerosis brains. We detected a 341-nucleotide fragment that was 99.4% identical to the major DNA binding protein gene of human herpesvirus 6 (HHV-6). Examination of 86 brain specimens by PCR demonstrated that HHV-6 was present in > 70% of MS cases and controls and is thus a commensal virus of the human brain. By DNA sequencing, 36/37 viruses from MS cases and controls were typed as HHV-6 variant B group 2. Other herpesviruses, retroviruses, and measles virus were detected infrequently or not at all. HHV-6 expression was examined by immunocytochemistry with monoclonal antibodies against HHV-6 virion protein 101K and DNA binding protein p41. Nuclear staining of oligodendrocytes was observed in MS cases but not in controls, and in MS cases it was observed around plaques more frequently than in uninvolved white matter. MS cases showed prominent cytoplasmic staining of neurons in gray matter adjacent to plaques, although neurons expressing HHV-6 were also found in certain controls. Since destruction of oligodendrocytes is a hallmark of MS, these studies suggest an association of HHV-6 with the etiology or pathogenesis of MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replication of the single-stranded linear DNA genome of parvovirus minute virus of mice (MVM) starts with complementary strand synthesis from the 3′-terminal snap-back telomere, which serves as a primer for the formation of double-stranded replicative form (RF) DNA. This DNA elongation reaction, designated conversion, is exclusively dependent on cellular factors. In cell extracts, we found that complementary strand synthesis was inhibited by the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and rescued by the addition of proliferating cell nuclear antigen, arguing for the involvement of DNA polymerase (Pol) δ in the conversion reaction. In vivo time course analyses using synchronized MVM-infected A9 cells allowed initial detection of MVM RF DNA at the G1/S phase transition, coinciding with the onset of cyclin A expression and cyclin A-associated kinase activity. Under in vitro conditions, formation of RF DNA was efficiently supported by A9 S cell extracts, but only marginally by G1 cell extracts. Addition of recombinant cyclin A stimulated DNA conversion in G1 cell extracts, and correlated with a concomitant increase in cyclin A-associated kinase activity. Conversely, a specific antibody neutralizing cyclin A-dependent kinase activity, abolished the capacity of S cell extracts for DNA conversion. We found no evidence for the involvement of cyclin E in the regulation of the conversion reaction. We conclude that cyclin A is necessary for activation of complementary strand synthesis, which we propose as a model reaction to study the cell cycle regulation of the Pol δ-dependent elongation machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve the efficiency of liposome-mediated DNA transfer as a tool for gene therapy, we have developed a fusigenic liposome vector based on principles of viral cell fusion. The fusion proteins of hemagglutinating virus of Japan (HVJ; also Sendai virus) are complexed with liposomes that encapsulate oligodeoxynucleotide or plasmid DNA. Subsequent fusion of HVJ-liposomes with plasma membranes introduces the DNA directly into the cytoplasm. In addition, a DNA-binding nuclear protein is incorporated into the HVJ-liposome particle to enhance plasmid transgene expression. The fusigenic viral liposome vector has proven to be efficient for the intracellular introduction of oligodeoxynucleotide, as well as intact genes up to 100 kbp, both in vitro and in vivo. Many animal tissues have been found to be suitable targets for fusigenic viral liposome DNA transfer. In the cardiovascular system, we have documented successful cytostatic gene therapy in models of vascular proliferative disease using antisense oligodeoxynucleotides against cell cycle genes, double-stranded oligodeoxynucleotides as "decoys" to trap the transcription factor E2F, and expression of a transgene encoding the constitutive endothelial cell form of nitric oxide synthase. Similar strategies are also effective for the genetic engineering of vein grafts and for the treatment of a mouse model of immune-mediated glomerular disease.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Ebola virus causes hemorrhagic fever in humans and nonhuman primates, resulting in mortality rates of up to 90%. Studies of this virus have been hampered by its extraordinary pathogenicity, which requires biosafety level 4 containment. To circumvent this problem, we developed a novel complementation system for functional analysis of Ebola virus glycoproteins. It relies on a recombinant vesicular stomatitis virus (VSV) that contains the green fluorescent protein gene instead of the receptor-binding G protein gene (VSVΔG*). Herein we show that Ebola Reston virus glycoprotein (ResGP) is efficiently incorporated into VSV particles. This recombinant VSV with integrated ResGP (VSVΔG*-ResGP) infected primate cells more efficiently than any of the other mammalian or avian cells examined, in a manner consistent with the host range tropism of Ebola virus, whereas VSVΔG* complemented with VSV G protein (VSVΔG*-G) efficiently infected the majority of the cells tested. We also tested the utility of this system for investigating the cellular receptors for Ebola virus. Chemical modification of cells to alter their surface proteins markedly reduced their susceptibility to VSVΔG*-ResGP but not to VSVΔG*-G. These findings suggest that cell surface glycoproteins with N-linked oligosaccharide chains contribute to the entry of Ebola viruses, presumably acting as a specific receptor and/or cofactor for virus entry. Thus, our VSV system should be useful for investigating the functions of glycoproteins from highly pathogenic viruses or those incapable of being cultured in vitro.