6 resultados para hematocrit

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used homologous recombination to disrupt the mouse gene coding for the NaK2Cl cotransporter (NKCC2) expressed in kidney epithelial cells of the thick ascending limb and macula densa. This gene is one of several that when mutated causes Bartter's syndrome in humans, a syndrome characterized by severe polyuria and electrolyte imbalance. Homozygous NKCC2−/− pups were born in expected numbers and appeared normal. However, by day 1 they showed signs of extracellular volume depletion (hematocrit 51%; wild type 37%). They subsequently failed to thrive. By day 7, they were small and markedly dehydrated and exhibited renal insufficiency, high plasma potassium, metabolic acidosis, hydronephrosis of varying severity, and high plasma renin concentrations. None survived to weaning. Treatment of −/− pups with indomethacin from day 1 prevented growth retardation and 10% treated for 3 weeks survived, although as adults they exhibited severe polyuria (10 ml/day), extreme hydronephrosis, low plasma potassium, high blood pH, hypercalciuria, and proteinuria. Wild-type mice treated with furosemide, an inhibitor of NaK2Cl cotransporters, have a phenotype similar to the indomethacin-rescued −/− adults except that hydronephrosis was mild. The polyuria, hypercalciuria, and proteinuria of the −/− adults and furosemide-treated wild-type mice were unresponsive to inhibitors of the renin angiotensin system, vasopressin, and further indomethacin. Thus absence of NKCC2 in the mouse causes polyuria that is not compensated elsewhere in the nephron. The NKCC2 mutant animals should be valuable for uncovering new pathophysiologic and therapeutic aspects of genetic disturbances in water and electrolyte recovery by the kidney.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient and safe heparin anticoagulation has remained a problem for continuous renal replacement therapies and intermittent hemodialysis for patients with acute renal failure. To make heparin therapy safer for the patient with acute renal failure at high risk of bleeding, we have proposed regional heparinization of the circuit via an immobilized heparinase I filter. This study tested a device based on Taylor-Couette flow and simultaneous separation/reaction for efficacy and safety of heparin removal in a sheep model. Heparinase I was immobilized onto agarose beads via cyanogen bromide activation. The device, referred to as a vortex flow plasmapheretic reactor, consisted of two concentric cylinders, a priming volume of 45 ml, a microporous membrane for plasma separation, and an outer compartment where the immobilized heparinase I was fluidized separately from the blood cells. Manual white cell and platelet counts, hematocrit, total protein, and fibrinogen assays were performed. Heparin levels were indirectly measured via whole-blood recalcification times (WBRTs). The vortex flow plasmapheretic reactor maintained significantly higher heparin levels in the extracorporeal circuit than in the sheep (device inlet WBRTs were 1.5 times the device outlet WBRTs) with no hemolysis. The reactor treatment did not effect any physiologically significant changes in complete blood cell counts, platelets, and protein levels for up to 2 hr of operation. Furthermore, gross necropsy and histopathology did not show any significant abnormalities in the kidney, liver, heart, brain, and spleen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that an electric treatment in the form of high-frequency, low-voltage electric pulses can increase more than 100-fold the production and secretion of a recombinant protein from mouse skeletal muscle. Therapeutical erythopoietin (EPO) levels were achieved in mice with a single injection of as little as 1 μg of plasmid DNA, and the increase in hematocrit after EPO production was stable and long-lasting. Pharmacological regulation through a tetracycline-inducible promoter allowed regulation of serum EPO and hematocrit levels. Tissue damage after stimulation was transient. The method described thus provides a potentially safe and low-cost treatment for serum protein deficiencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a "plug and socket" targeting technique to generate a mouse model of beta 0-thalassemia in which both the b1 and b2 adult globin genes have been deleted. Mice homozygous for this deletion (Hbbth-3/Hbbth-3) die perinatally, similar to the most severe form of Cooley anemia in humans. Mice heterozygous for the deletion appear normal, but their hematologic indices show characteristics typical of severe thalassemia, including dramatically decreased hematocrit, hemoglobin, red blood cell counts, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration, as well as dramatically increased reticulocyte counts, serum bilirubin concentrations, and red cell distribution widths. Tissue and organ damage typical of beta-thalassemia, such as bone deformities and splenic enlargement due to increased hematopoiesis, are also seen in the heterozygous animals, as is spontaneous iron overload in the spleen, liver, and kidneys. The mice homozygous for the b1 and b2 deletions should be of great value in developing therapies for the treatment of thalassemias in utero. The heterozygous animals will be useful for studying the pathophysiology of thalassemias and have the potential of generating a model of sickle cell anemia when mated with appropriate transgenic animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The injection of recombinant erythropoietin (Epo) is now widely used for long-term treatment of anemia associated with chronic renal failure, cancer, and human immunodeficiency virus infections. The ability to deliver this hormone by gene therapy rather than by repeated injections could provide substantial clinical and economic benefits. As a preliminary approach, we investigated in rats the expression and biological effects of transplanting autologous vascular smooth muscle cells transduced with a retroviral vector encoding rat Epo cDNA. Vector-derived Epo secretion caused increases in reticulocytes, with peak levels of 7.8-9.6% around day 10 after implantation. The initial elevation in reticulocytes was followed by clinically significant increases in hematocrit and hemoglobin for up to 11 weeks. Ten control and treated animals showed mean hematocrits of 44.9 +/- 0.4% and 58.7 +/- 3.1%, respectively (P < 0.001), and hemoglobin values of 15.6 +/- 0.1 g/dl and 19.8 +/- 0.9 g/dl, respectively (P < 0.001). There were no significant differences between control and treated animals in the number of white blood cells and platelets. Kidney and to a lesser extent liver are specific organs that synthesize Epo in response to tissue oxygenation. In the treated animals, endogenous Epo mRNA was largely down regulated in kidney and absent from liver. These results indicate that vascular smooth muscle cells can be genetically modified to provide treatment of anemias due to Epo deficiency and suggest that this cell type may be targeted in the treatment of other diseases requiring systemic therapeutic protein delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have examined whether the secretion of erythropoietin (Epo) from genetically modified cells could represent an alternative to repeated injections of the recombinant hormone for treating chronic anemias responsive to Epo. Primary mouse skin fibroblasts were transduced with a retroviral vector in which the murine Epo cDNA is expressed under the control of the murine phosphoglycerate kinase promoter. "Neo-organs" containing the genetically modified fibroblasts embedded into collagen lattices were implanted into the peritoneal cavity of mice. Increased hematocrit (> 80%) and elevated serum Epo concentration (ranging from 60 to 408 milliunits/ml) were observed in recipient animals over a 10-month observation period. Hematocrit values measured in recipient mice varied according to the number of implanted Epo-secreting fibroblasts (ranging from 2.5 to 20 x 10(6)). The implantation of neo-organs containing Epo-secreting fibroblasts appeared, therefore, as a convenient method to achieve permanent in vivo delivery of the hormone. We estimated that the biological efficacy of the approach may be relevant for the treatment of human hemoglobinopathies.