8 resultados para heat of reaction

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A far-red type of oxygenic photosynthesis was discovered in Acaryochloris marina, a recently found marine prokaryote that produces an atypical pigment chlorophyll d (Chl d). The purified photosystem I reaction center complex of A. marina contained 180 Chl d per 1 Chl a with PsaA–F, -L, -K, and two extra polypeptides. Laser excitation induced absorption changes of reaction center Chl d that was named P740 after its peak wavelength. A midpoint oxidation reduction potential of P740 was determined to be +335 mV. P740 uses light of significantly low quantum energy (740 nm = 1.68 eV) but generates a reducing power almost equivalent to that produced by a special pair of Chl a (P700) that absorbs red light at 700 nm (1.77 eV) in photosystem I of plants and cyanobacteria. The oxygenic photosynthesis based on Chl d might either be an acclimation to the far-red light environments or an evolutionary intermediate between the red-absorbing oxygenic and the far-red absorbing anoxygenic photosynthesis that uses bacteriochlorophylls.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nucleic acid sequence-based amplification (NASBA) has proved to be an ultrasensitive method for HIV-1 diagnosis in plasma even in the primary HIV infection stage. This technique was combined with fluorescence correlation spectroscopy (FCS) which enables online detection of the HIV-1 RNA molecules amplified by NASBA. A fluorescently labeled DNA probe at nanomolar concentration was introduced into the NASBA reaction mixture and hybridizing to a distinct sequence of the amplified RNA molecule. The specific hybridization and extension of this probe during amplification reaction, resulting in an increase of its diffusion time, was monitored online by FCS. As a consequence, after having reached a critical concentration of 0.1–1 nM (threshold for unaided FCS detection), the number of amplified RNA molecules in the further course of reaction could be determined. Evaluation of the hybridization/extension kinetics allowed an estimation of the initial HIV-1 RNA concentration that was present at the beginning of amplification. The value of initial HIV-1 RNA number enables discrimination between positive and false-positive samples (caused for instance by carryover contamination)—this possibility of discrimination is an essential necessity for all diagnostic methods using amplification systems (PCR as well as NASBA). Quantitation of HIV-1 RNA in plasma by combination of NASBA with FCS may also be useful in assessing the efficacy of anti-HIV agents, especially in the early infection stage when standard ELISA antibody tests often display negative results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many elementary chemical and physical processes such as the breaking of a chemical bond or the vibrational motion of atoms within a molecule take place on a femtosecond (fs = 10−15 s) or picosecond (ps = 10−12 s) time scale. It is now possible to monitor these events as a function of time with temporal resolution well below 100 fs. This capability is based on the pump-probe technique where one optical pulse triggers a reaction and a second delayed optical pulse probes the changes that ensue. To illustrate this capability, the dynamics of ligand motion within a protein are presented. Moving beyond casual observation of a reaction to active control of its outcome requires additional experimental and theoretical effort. To illustrate the concept of control, the effect of optical pulse duration on the vibrational dynamics of a tri-atomic molecule are discussed. The experimental and theoretical resources currently available are poised to make the dream of reaction control a reality for certain molecular systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe a procedure for the generation of chemically accurate computer-simulation models to study chemical reactions in the condensed phase. The process involves (i) the use of a coupled semiempirical quantum and classical molecular mechanics method to represent solutes and solvent, respectively; (ii) the optimization of semiempirical quantum mechanics (QM) parameters to produce a computationally efficient and chemically accurate QM model; (iii) the calibration of a quantum/classical microsolvation model using ab initio quantum theory; and (iv) the use of statistical mechanical principles and methods to simulate, on massively parallel computers, the thermodynamic properties of chemical reactions in aqueous solution. The utility of this process is demonstrated by the calculation of the enthalpy of reaction in vacuum and free energy change in aqueous solution for a proton transfer involving methanol, methoxide, imidazole, and imidazolium, which are functional groups involved with proton transfers in many biochemical systems. An optimized semiempirical QM model is produced, which results in the calculation of heats of formation of the above chemical species to within 1.0 kcal/mol (1 kcal = 4.18 kJ) of experimental values. The use of the calibrated QM and microsolvation QM/MM (molecular mechanics) models for the simulation of a proton transfer in aqueous solution gives a calculated free energy that is within 1.0 kcal/mol (12.2 calculated vs. 12.8 experimental) of a value estimated from experimental pKa values of the reacting species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fructans play an important role in assimilate partitioning and possibly in stress tolerance in many plant families. Sucrose:fructan 6-fructosyltransferase (6-SFT), an enzyme catalyzing the formation and extension of beta-2,6-linked fructans typical of grasses, was purified from barley (Hordeum vulgare L.). It occurred in two closely similar isoforms with indistinguishable catalytic properties, both consisting of two subunits with apparent masses of 49 and 23 kDa. Oligonucleotides, designed according to the sequences of tryptic peptides from the large subunit, were used to amplify corresponding sequences from barley cDNA. The main fragment generated was cloned and used to screen a barley cDNA expression library. The longest cDNA obtained was transiently expressed in Nicotiana plumbaginifolia protoplasts and shown to encode a functional 6-SFT. The deduced amino acid sequence of the cDNA comprises both subunits of 6-SFT. It has high similarity to plant invertases and other beta-fructosyl hydrolases but only little to bacterial fructosyltransferases catalyzing the same type of reaction as 6-SFT.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a model of the photosystem II (PS II) reaction center in which its spectral properties result from weak (approximately 100 cm-1) excitonic interactions between the majority of reaction center chlorins. Such a model is consistent with a structure similar to that of the reaction center of purple bacteria but with a reduced coupling of the chlorophyll special pair. We find that this model is consistent with many experimental studies of PS II. The similarity in magnitude of the exciton coupling and energetic disorder in PS II results in the exciton states being structurally highly heterogeneous. This model suggests that P680, the primary electron donor of PS II, should not be considered a dimer but a multimer of several weakly coupled pigments, including the pheophytin electron acceptor. We thus conclude that even if the reaction center of PS II is structurally similar to that of purple bacteria, its spectroscopy and primary photochemistry may be very different.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA topoisomerase II is a homodimeric molecular machine that couples ATP usage to the transport of one DNA segment through a transient break in another segment. In the presence of a nonhydrolyzable ATP analog, the enzyme is known to promote a single turnover of DNA transport. Current models for the enzyme’s mechanism based on this result have hydrolysis of two ATPs as the last step, used only to reset the enzyme for another round of reaction. Using rapid-quench techniques, topoisomerase II recently was shown to hydrolyze its two bound ATPs in a strictly sequential manner. This result is incongruous with the models based on the nonhydrolyzable ATP analog data. Here we present evidence that hydrolysis of one ATP by topoisomerase II precedes, and accelerates, DNA transport. These results indicate that important features of this enzyme’s mechanism previously have been overlooked because of the reliance on nonhydrolyzable analogs for studying a single reaction turnover. A model for the mechanism of topoisomerase II is presented to show how hydrolysis of one ATP could drive DNA transport.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although weightlessness is known to affect living cells, the manner by which this occurs is unknown. Some reaction-diffusion processes have been theoretically predicted as being gravity-dependent. Microtubules, a major constituent of the cellular cytoskeleton, self-organize in vitro by way of reaction-diffusion processes. To investigate how self-organization depends on gravity, microtubules were assembled under low gravity conditions produced during space flight. Contrary to the samples formed on an in-flight 1 × g centrifuge, the samples prepared in microgravity showed almost no self-organization and were locally disordered.