8 resultados para head-group
em National Center for Biotechnology Information - NCBI
Resumo:
Lipoproteins are emulsion particles that consist of lipids and apolipoproteins. Their natural function is to transport lipids and/or cholesterol to different tissues. We have taken advantage of the hydrophobic interior of these natural emulsions to solubilize DNA. Negatively charged DNA was first complexed with cationic lipids containing a quaternary amine head group. The resulting hydrophobic complex was extracted by chloroform and then incorporated into reconstituted chylomicron remnant particles (≈100 nm in diameter) with an efficiency ≈65%. When injected into the portal vein of mice, there were ≈5 ng of a transgene product (luciferase) produced per mg of liver protein per 100 μg injected DNA. This level of transgene expression was ≈100-fold higher than that of mice injected with naked DNA. However, such a high expression was not found after tail vein injection. Histochemical examination revealed that a large number of parenchymal cells and other types of cells in the liver expressed the transgene. Gene expression in the liver increased with increasing injected dose, and was nearly saturated with 50 μg DNA. At this dose, the expression was kept at high level in the liver for 2 days and then gradually reduced and almost disappeared by 7 days. However, by additional injection at day 7, gene expression in the liver was completely restored. By injection of plasmid DNA encoding human α1-antitrypsin, significant concentrations of hAAT were detected in the serum of injected animals. This is the first nonviral vector that resembles a natural lipoprotein carrier.
Resumo:
Certain proteins contain subunits that enable their active translocation across the plasma membrane into cells. In the specific case of HIV-1, this subunit is the basic domain Tat49–57 (RKKRRQRRR). To establish the optimal structural requirements for this translocation process, and thereby to develop improved molecular transporters that could deliver agents into cells, a series of analogues of Tat49–57 were prepared and their cellular uptake into Jurkat cells was determined by flow cytometry. All truncated and alanine-substituted analogues exhibited diminished cellular uptake, suggesting that the cationic residues of Tat49–57 play a principal role in its uptake. Charge alone, however, is insufficient for transport as oligomers of several cationic amino acids (histidine, lysine, and ornithine) are less effective than Tat49–57 in cellular uptake. In contrast, a 9-mer of l-arginine (R9) was 20-fold more efficient than Tat49–57 at cellular uptake as determined by Michaelis–Menton kinetic analysis. The d-arginine oligomer (r9) exhibited an even greater uptake rate enhancement (>100-fold). Collectively, these studies suggest that the guanidinium groups of Tat49–57 play a greater role in facilitating cellular uptake than either charge or backbone structure. Based on this analysis, we designed and synthesized a class of polyguanidine peptoid derivatives. Remarkably, the subset of peptoid analogues containing a six-methylene spacer between the guanidine head group and backbone (N-hxg), exhibited significantly enhanced cellular uptake compared to Tat49–57 and even to r9. Overall, a transporter has been developed that is superior to Tat49–57, protease resistent, and more readily and economically prepared.
Resumo:
Betaine lipids are ether-linked, nonphosphorous glycerolipids that resemble the more commonly known phosphatidylcholine in overall structure. Betaine lipids are abundant in many eukaryotes such as nonseed plants, algae, fungi, and amoeba. Some of these organisms are entirely devoid of phosphatidylcholine and, instead, contain a betaine lipid such as diacylglyceryl-O-4′-(N,N,N,-trimethyl)homoserine. Recently, this lipid also was discovered in the photosynthetic purple bacterium Rhodobacter sphaeroides where it seems to replace phosphatidylcholine under phosphate-limiting growth conditions. This discovery provided the opportunity to study the biosynthesis of betaine lipids in a bacterial model system. Mutants of R. sphaeroides deficient in the biosynthesis of the betaine lipid were isolated, and two genes essential for this process, btaA and btaB, were identified. It is proposed that btaA encodes an S-adenosylmethionine:diacylglycerol 3-amino-3-carboxypropyl transferase and btaB an S-adenosylmethionine-dependent N-methyltransferase. Both enzymatic activities can account for all reactions of betaine lipid head group biosynthesis. Because the equivalent reactions have been proposed for different eukaryotes, it seems likely that orthologs of btaA/btaB may be present in other betaine lipid-containing organisms.
Resumo:
The mammalian phosphatidylinositol/phosphatidylcholine transfer proteins (PI-TPs) catalyze exchange of phosphatidylinositol (PI) or phosphatidylcholine (PC) between membrane bilayers in vitro. We find that Ser-25, Thr-59, Pro-78, and Glu-248 make up a set of rat (r) PI-TP residues, substitution of which effected a dramatic reduction in the relative specific activity for PI transfer activity without significant effect on PC transfer activity. Thr-59 was of particular interest as it is a conserved residue in a highly conserved consensus protein kinase C phosphorylation motif in metazoan PI-TPs. Replacement of Thr-59 with Ser, Gln, Val, Ile, Asn, Asp, or Glu effectively abolished PI transfer capability but was essentially silent with respect to PC transfer activity. These findings identify rPI-TP residues that likely cooperate to form a PI head-group binding/recognition site or that lie adjacent to such a site. Finally, the selective sensitivity of the PI transfer activity of rPI-TP to alteration of Thr-59 suggests a mechanism for in vivo regulation of rPI-TP activity.
Resumo:
Near infrared Yb3+ vibronic sideband spectroscopy was used to characterize specific lanthanide binding sites in bacteriorhodopsin (bR) and retinal free bacteriorhodopsin (bO). The VSB spectra for deionized bO regenerated with a ratio of 1:1 and 2:1 ion to bO are identical. Application of a two-dimensional anti-correlation technique suggests that only a single Yb3+ site is observed. The Yb3+ binding site in bO is observed to consist of PO2− groups and carboxylic acid groups, both of which are bound in a bidentate manner. An additional contribution most likely arising from a phenolic group is also observed. This implies that the ligands for the observed single binding site are the lipid head groups and amino acid residues. The vibronic sidebands of Yb3+ in deionized bR regenerated at a ratio of 2:1 ion to bR are essentially identical to those in bO. The other high-affinity binding site is thus either not evident or its fluorescence is quenched. A discussion is given on the difference in binding of Ca2+ (or Mg2+) and lanthanides in phospholipid membrane proteins.
Resumo:
Chelicerates constitute a basic arthropod group with fossil representatives from as early as the Cambrian period. Embryonic development and the subdivision of the segmented body region into a prosoma and an opisthosoma are very similar in all extant chelicerates. The mode of head segmentation, however, has long been controversial. Although all other arthropod groups show a subdivision of the head region into six segments, the chelicerates are thought to have the first antennal segment missing. To examine this problem on a molecular level, we have compared the expression pattern of Hox genes in the spider Cupiennius salei with the pattern known from insects. Surprisingly, we find that the anterior expression borders of the Hox genes are in the same register and the same relative segmental position as in Drosophila. This contradicts the view that the homologue of the first antennal segment is absent in the spider. Instead, our data suggest that the cheliceral segment is homologous to the first antennal segment and the pedipalpal segment is homologous to the second antennal (or intercalary) segment in arthropods. Our finding implies that chelicerates, myriapods, crustaceans, and insects share a single mode of head segmentation, reinforcing the argument for a monophyletic origin of the arthropods.
Resumo:
Objective: To determine whether the excess mortality observed in patients who received both levodopa and selegiline in a randomised trial could be explained by revised diagnosis of Parkinson’s disease, autonomic or cardiovascular effects, more rapid disease progression, or drug interactions.