4 resultados para harms

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electron density map of the small ribosomal subunit from Thermus thermophilus, constructed at 4.5 Å resolution, shows the recognizable morphology of this particle, as well as structural features that were interpreted as ribosomal RNA and proteins. Unbiased assignments, carried out by quantitative covalent binding of heavy atom compounds at predetermined sites, led to the localization of the surface of the ribosomal protein S13 at a position compatible with previous assignments, whereas the surface of S11 was localized at a distance of about twice its diameter from the site suggested for its center by neutron scattering. Proteins S5 and S7, whose structures have been determined crystallographically, were visually placed in the map with no alterations in their conformations. Regions suitable to host the fold of protein S15 were detected in several positions, all at a significant distance from the location of this protein in the neutron scattering map. Targeting the 16S RNA region, where mRNA docks to allow the formation of the initiation complex by a mercurated mRNA analog, led to the characterization of its vicinity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hypoxic/anoxic microenvironment has been proposed to exist within a vascular lesion due to intimal or medial cell proliferation in vascular diseases. Here, we examined whether hypoxia alters macrophage function by exposing murine macrophage-like RAW 264.7 (RAW) cells to hypoxia (2% O2). When cells were exposed to hypoxia, a significant number of RAW cells underwent apoptosis. Additionally, small subpopulations of RAW cells were resistant to hypoxia-induced apoptosis. Through repeated cycles of hypoxia exposure, hypoxia-induced apoptosis-resistant macrophages (HARMs) were selected; HARM cells demonstrate >70% resistance to hypoxia-induced apoptosis, as compared with the parental RAW cells. When heat shock protein (HSP) expression was examined after hypoxia, we observed a significant decrease in constitutive heat shock protein 70 (HSC 70) in RAW cells, but not in HARMs, as compared with the control normoxic condition (21% O2). In contrast, the expression level of glucose-regulated protein 78 (GRP 78) in RAW and HARM cells after hypoxia treatment was not altered, suggesting that HSC 70 and not GRP 78 may play a role in protection against hypoxia-induced apoptosis. When tumor necrosis factor α (TNF-α) production was examined after hypoxic treatment, a significant increase in TNF-α production in HARM but decrease in RAW was observed, as compared with cells cultured in normoxic conditions. HARM cells also exhibit a much lower level of modified-LDL uptake than do RAW cells, suggesting that HARMs may not transform into foam cells. These results suggest that a selective population of macrophages may adapt to potentially pathological hypoxic conditions by overcoming the apoptotic signal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allene oxide synthase (AOS) mediates the conversion of lipoxygenase-derived fatty acid hydroperoxides to unstable allene epoxides, which supply the precursors for the synthesis of the phytohormone jasmonic acid (JA). In this study the characterization of AOS gene expression in flax (Linum usitatissimum) is reported. AOS was constitutively expressed in different organs of flax plants. Additionally, AOS gene expression was enhanced after mechanical wounding in both the directly damaged leaves and in the systemic tissue located distal to the treated leaves. This wound-induced accumulation of AOS required the de novo biosynthesis of other unknown proteins involved in the signaling pathway modulating wound-induced AOS gene expression. Furthermore, the wound-induced AOS mRNA accumulation was correlated with the increase in the levels of JA. Both JA and its precursor, 12-oxo-phytodienoic acid, activated AOS gene expression in a dose-dependent manner. Thus, JA could activate its own biosynthetic pathway in flax leaves. Moreover, neither salicylic acid (SA) nor aspirin influenced AOS enzymatic activity. It is interesting that pretreatment with SA or aspirin inhibited wound-induced accumulation of AOS transcripts. These results suggest that a potent inhibition of JA biosynthetic capacity in leaves can be affected by SA or aspirin at the level of AOS gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding stoichiometry of gene V protein from bacteriophage f1 to several oligonucleotides was studied using electrospray ionization-mass spectrometry (ESI-MS). Using mild mass spectrometer interface conditions that preserve noncovalent associations in solution, gene V protein was observed as dimer ions from a 10 mM NH4OAc solution. Addition of oligonucleotides resulted in formation of protein-oligonucleotide complexes with stoichiometry of approximately four nucleotides (nt) per protein monomer. A 16-mer oligonucleotide gave predominantly a 4:1 (protein monomer: oligonucleotide) complex while oligonucleotides shorter than 15 nt showed stoichiometries of 2:1. Stoichiometries and relative binding constants for a mixture of oligonucleotides were readily measured using mass spectrometry. The binding stoichiometry of the protein with the 16-mer oligonucleotide was measured independently using size-exclusion chromatography and the results were consistent with the mass spectrometric data. These results demonstrate, for the first time, the observation and stoichiometric measurement of protein-oligonucleotide complexes using ESI-MS. The sensitivity and high resolution of ESI-MS should make it a useful too] in the study of protein-DNA interactions.