5 resultados para harmonic losses

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastid genomes of some nonphotosynthetic parasitic plants have experienced an extreme reduction in gene content and an increase in evolutionary rate of remaining genes. Nothing is known of the dynamics of these events or whether either is a direct outcome of the loss of photosynthesis. The parasitic Scrophulariaceae and Orobanchaceae, representing a continuum of heterotrophic ability ranging from photosynthetic hemiparasites to nonphotosynthetic holoparasites, are used to investigate these issues. We present a phylogenetic hypothesis for parasitic Scrophulariaceae and Orobanchaceae based on sequences of the plastid gene rps2, encoding the S2 subunit of the plastid ribosome. Parasitic Scrophulariaceae and Orobanchaceae form a monophyletic group in which parasitism can be inferred to have evolved once. Holoparasitism has evolved independently at least five times, with certain holoparasitic lineages representing single species, genera, and collections of nonphotosynthetic genera. Evolutionary loss of the photosynthetic gene rbcL is limited to a subset of holoparasitic lineages, with several holoparasites retaining a full length rbcL sequence. In contrast, the translational gene rps2 is retained in all plants investigated but has experienced rate accelerations in several hemi- as well as holoparasitic lineages, suggesting that there may be substantial molecular evolutionary changes to the plastid genome of parasites before the loss of photosynthesis. Independent patterns of synonymous and nonsynonymous rate acceleration in rps2 point to distinct mechanisms underlying rate variation in different lineages. Parasitic Scrophulariaceae (including the traditional Orobanchaceae) provide a rich platform for the investigation of molecular evolutionary process, gene function, and the evolution of parasitism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Losses of heterozygosity are the most common molecular genetic alteration observed in human cancers. However, there have been few systematic studies to understand the mechanism(s) responsible for losses of heterozygosity in such tumors. Here we report a detailed investigation of the five chromosomes lost most frequently in human colorectal cancers. A total of 10,216 determinations were made with 88 microsatellite markers, revealing 245 chromosomal loss events. The mechanisms of loss were remarkably chromosome-specific. Some chromosomes displayed complete loss such as that predicted to result from mitotic nondisjunction. However, more than half of the losses were associated with losses of only part of a chromosome rather than a whole chromosome. Surprisingly, these losses were due largely to structural alterations rather than to mitotic recombination, break-induced replication, or gene conversion, suggesting novel mechanisms for the generation of much of the aneuploidy in this common tumor type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased 4N (G2/tetraploid) cell populations have been postulated to be genetically unstable intermediates in the progression to many cancers, but the mechanism by which they develop and their relationship to instability have been difficult to investigate in humans in vivo. Barrett's esophagus is an excellent model system in which to investigate the order in which genetic and cell cycle abnormalities develop relative to each other during human neoplastic progression. Neoplastic progression in Barrett's esophagus is characterized by inactivation of the p53 gene, the development of increased 4N (G2/tetraploid) cell fractions, and the appearance of aneuploid cell populations. We investigated the hypothesis that patients whose biopsies have increased 4N (G2/tetraploid) cell fractions are predisposed to progression to aneuploidy and determined the relationship between inactivation of p53 and the development of 4N abnormalities in Barrett's epithelium. Our results indicate that increased 4N (G2/tetraploid) populations predict progression to aneuploidy and that the development of 4N abnormalities is interdependent with inactivation of the p53 gene in Barrett's esophagus in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothesis that age-associated impairment of cognitive and motor functions is due to oxidative molecular damage was tested in the mouse. In a blind study, senescent mice (aged 22 months) were subjected to a battery of behavioral tests for motor and cognitive functions and subsequently assayed for oxidative molecular damage as assessed by protein carbonyl concentration in different regions of the brain. The degree of age-related impairment in each mouse was determined by comparison to a reference group of young mice (aged 4 months) tested concurrently on the behavioral battery. The age-related loss of ability to perform a spatial swim maze task was found to be positively correlated with oxidative molecular damage in the cerebral cortex, whereas age-related loss of motor coordination was correlated with oxidative molecular damage within the cerebellum. These results support the view that oxidative stress is a causal factor in brain senescence. Furthermore, the findings suggest that age-related declines of cognitive and motor performance progress independently, and involve oxidative molecular damage within different regions of the brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Claims that there will be a massive loss of species as tropical forests are cleared are based on the relationship between habitat area and the number of species. Few studies calibrate extinction with habitat reduction. Critics raise doubts about this calibration, noting that there has been extensive clearing of the eastern North American forest, yet only 4 of its approximately 200 bird species have gone extinct. We analyze the distribution of bird species and the timing and extent of forest loss. The forest losses were not concurrent across the region. Based on the maximum extent of forest losses, our calculations predict fewer extinctions than the number observed. At most, there are 28 species of birds restricted to the region. Only these species would be at risk even if all the forests were cleared. Far from providing comfort to those who argue that the current rapid rate of tropical deforestation might cause fewer extinctions than often claimed, our results suggest that the losses may be worse. In contrast to eastern North America, small regions of tropical forest often hold hundreds of endemic bird species.