6 resultados para halo nuclei, density distributions and radii, elastic proton scattering, intermediate energies

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) was found to inhibit differentiation of myogenic cells only when they were grown to high density. Inhibition also occurred when myogenic cells were cocultured with other types of mesenchymal cells but not when they were cocultured with epithelial cells. It is therefore possible that some density-dependent signaling mediates the intracellular response to TGF-β. Within 30 min of treatment, TGF-β induced translocation of MEF2, but not MyoD, myogenin, or p21, to the cytoplasm of myogenic cells grown to high density. Translocation was reversible on withdrawal of TGF-β. By using immune electron microscopy and Western blot analysis on subcellular fractions, MEF2 was shown to be tightly associated with cytoskeleton membrane components. To test whether MEF2 export from the nucleus was causally related to the inhibitory action of TGF-β, we transfected C2C12 myoblasts with MEF2C containing the nuclear localization signal of simian virus 40 large T antigen (nlsSV40). Myogenic cells expressing the chimerical MEF2C/nlsSV40, but not wild-type MEF2C, retained this transcription factor in the nucleus and were resistant to the inhibitory action of TGF-β. We propose a mechanism in which the inhibition of myogenesis by TGF-β is mediated through MEF2 localization to the cytoplasm, thus preventing it from participating in an active transcriptional complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously reported the partial purification of a 94- to 97-kDa plasma membrane protein from mouse peritoneal macrophages that binds oxidatively modified low density lipoprotein (OxLDL) and phosphatidylserine-rich liposomes. We have now identified that protein as macrosialin, a previously cloned macrophage-restricted membrane protein in the lysosomal-associated membrane protein family (mouse homologue of human CD68). Early in the course of purification of the 94- to 97-kDa protein, a new OxLDL-binding band at 190-200 kDa appeared and copurified with the 94- to 97-kDa protein. The HPLC pattern of tryptic peptides from this higher molecular mass ligand-binding band closely matched that derived from the 94- to 97-kDa band. Specifically, the same three macrosialin-derived tryptic peptides (9, 9, and 15 residues) were present in the purified 94- to 97-kDa band and in the 190- to 200-kDa band and antisera raised against peptide sequences in macrosialin recognized both bands. An antiserum against macrosialin precipitated most of the 94- to 97-kDa OxLDL-binding material. We conclude that the binding of OxLDL to mouse macrophage membranes is in part attributable to macrosialin. Our previous studies show that OxLDL competes with oxidized red blood cells and with apoptotic thymocytes for binding to mouse peritoneal macrophages. Whether macrosialin plays a role in recognition of OxLDL and oxidatively damaged cells by intact macrophages remains uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the fibrillogenesis of synthetic amyloid beta-protein-(1-40) fragment (A beta) in 0.1 M HCl. At low pH, A beta formed fibrils at a rate amenable to detailed monitoring by quasi-elastic light-scattering spectroscopy. Examination of the fibrils with circular dichroism spectroscopy and electron microscopy showed them to be highly similar to those found in amyloid plaques. We determined the hydrodynamic radii of A beta aggregates during the entire process of fibril nucleation and growth. Above an A beta concentration of approximately 0.1 mM, the initial rate of elongation and the final size of fibrils were independent of A beta concentration. Below an A beta concentration of 0.1 mM, the initial elongation rate was proportional to the peptide concentration, and the resulting fibrils were significantly longer than those formed at higher concentration. We also found that the surfactant n-dodecylhexaoxyethylene glycol monoether (C12E6) slowed nucleation and elongation of fibrils in a concentration-dependent manner. Our observations are consistent with a model of A beta fibrillogenesis that includes the following key steps: (i) peptide micelles form above a certain critical A beta concentration, (ii) fibrils nucleate within these micelles or on heterogeneous nuclei (seeds), and (iii) fibrils grow by irreversible binding of monomers to fibril ends. Interpretation of our data enabled us to determine the sizes of fibril nuclei and A beta micelles and the rates of fibril nucleation (from micelles) and fibril elongation. Our approach provides a powerful means for the quantitative assay of A beta fibrillogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Possible instabilities during cosmological recombination may produce an epoch of nonlinear density growth and fractal-like structural patterns out to the horizon scale at that epoch (approximately 200 Mpc today). With this motivation, we examine the consequences of the change in effective radiative recombination reaction rate coefficients produced by intense stimulated emission. The proton-electron recombination is considered as a natural laser, leading to the formation of spatially nonuniform distributions of neutral matter earlier than the recombination epoch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear matrix binding assays (NMBAs) define certain DNA sequences as matrix attachment regions (MARs), which often have cis-acting epigenetic regulatory functions. We used NMBAs to analyze the functionally important 15q11-q13 imprinting center (IC). We find that the IC is composed of an unusually high density of MARs, located in close proximity to the germ line elements that are proposed to direct imprint switching in this region. Moreover, we find that the organization of MARs is the same at the homologous mouse locus, despite extensive divergence of DNA sequence. MARs of this size are not usually associated with genes but rather with heterochromatin-forming areas of the genome. In contrast, the 15q11-q13 region contains multiple transcribed genes and is unusual for being subject to genomic imprinting, causing the maternal chromosome to be more transcriptionally silent, methylated, and late replicating than the paternal chromosome. We suggest that the extensive MAR sequences at the IC are organized as heterochromatin during oogenesis, an organization disrupted during spermatogenesis. Consistent with this model, multicolor fluorescence in situ hybridization to halo nuclei demonstrates a strong matrix association of the maternal IC, whereas the paternal IC is more decondensed, extending into the nuclear halo. This model also provides a mechanism for spreading of the imprinting signal, because heterochromatin at the IC on the maternal chromosome may exert a suppressive position effect in cis. We propose that the germ line elements at the 15q11-q13 IC mediate their effects through the candidate heterochromatin-forming DNA identified in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of heritable, population-wide cell damage in neoplastic development was studied in the 28 L subline of NIH 3T3 cells. These cells differ from the 17(3c) subline used previously for such studies in their lower frequency of "spontaneous" transformation at high population density and their greater capacity to produce large, dense transformed foci. Three cultures of the 28 L subline of NIH 3T3 cells were held under the constraint of confluence for 5 wk (5 wk 1 degree assay) and then assayed twice in succession (2 degrees and 3 degrees assays) for transformed foci and saturation density. After the 2 degrees assay, the cells were also passaged at low density to determine their exponential growth rates and cloned to determine the size and morphological features of the colonies. Concurrent measurements were made in each case with control cells that had been kept only in frequent low-density passages and cells that had been kept at confluence for only 2 wk (2 wk 1 degree). Two of the three cultures transferred from the 2 degrees assay of the 5 wk 1 degree cultures produced light transformed foci, and the third produced dense foci. The light focus-forming cultures grew to twice the control saturation density in their 2 degrees assay and 6-8 times the control density in the 3 degrees assay; saturation densities for the dense focus formers were about 10 times the control values in both assays. All three of the cultures transferred from the 2 degrees assay of the 5 wk 1 degree cultures multiplied at lower rates than controls at low densities, but the dense focus formers multiplied faster than the light focus formers. The reduced rates of multiplication of the light focus formers persisted for > 50 generations of exponential multiplication at low densities. Isolated colonies formed from single cells of the light focus formers were of a lower population density than controls; colonies formed by the dense focus formers were slightly denser than the controls but occupied only half the area. A much higher proportion of the colonies from the 5 wk 1 degree cultures than the controls consisted of giant cells or mixtures of giant and normal-appearing cells. The results reinforce the previous conclusion that the early increases in saturation density and light focus formation are associated with, and perhaps caused by, heritable, population-wide damage to cells that is essentially epigenetic in nature. The more advanced transformation characterized by large increases in saturation density and dense focus formation could have originated from rare genetic changes, such as chromosome rearrangements, known to occur at an elevated frequency in cells destabilized by antecedent cellular damage.