4 resultados para grass sod
em National Center for Biotechnology Information - NCBI
Resumo:
Patterns of variation at the Sod locus of Drosophila melanogaster suggest that the protein polymorphism at this locus has very recently arisen. In addition, it appears that a previously rare DNA variant has been recently and rapidly driven to intermediate frequency. From the size of the region (>20 kb) that has been swept along with this rare variant, and patterns of linkage disequilibrium in the region, it is inferred that strength of selection was large (s > 0.01) and that the sweep occurred more than 25,000 generations ago. In addition, there are striking similarities to patterns of variation observed at the Est6 and Est-P loci, which are located approximately 1,000 kb from Sod.
Resumo:
For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that insert between genes. These retroelements are less abundant in smaller genome plants, including rice and sorghum. Although 5- to 200-kb blocks of methylated, presumably heterochromatic, retrotransposons flank most maize genes, rice and sorghum genes are often adjacent. Similar genes are commonly found in the same relative chromosomal locations and orientations in each of these three species, although there are numerous exceptions to this collinearity (i.e., rearrangements) that can be detected at the levels of both the recombinational map and cloned DNA. Evolutionarily conserved sequences are largely confined to genes and their regulatory elements. Our results indicate that a knowledge of grass genome structure will be a useful tool for gene discovery and isolation, but the general rules and biological significance of grass genome organization remain to be determined. Moreover, the nature and frequency of exceptions to the general patterns of grass genome structure and collinearity are still largely unknown and will require extensive further investigation.
Resumo:
The alcohol dehydrogenase (Adh; alcohol:NAD+ oxidoreductase, EC 1.1.1.1) gene family has two or three loci in a broad array of angiosperm species. The relative stability in the number of Adh loci led Gottlieb [Gottlieb, L. D. (1982) Science 216, 373-380] to propose that the Adh gene family arose from an ancient gene duplication. In this study, the isolation of three loci from the California fan palm (Washingtonia robusta) is reported. The three loci from palm are highly diverged. One palm Adh gene, referred to here as adhB, has been completely sequenced, including 950 nucleotides of the upstream regulatory region. For the second locus, adhA, 81% of the exon sequence is complete. Both show the same basic structure as grass Adh genes in terms of intron number and intron location. The third locus, adhC, for which only a small amount of sequence is available (12% of exon sequence) appears to be more highly diverged. Comparison of the Adh gene families from palms and grasses shows that the adh1 and adh2 genes of grasses, and the adhA and adhB genes of palms, arose by duplication following the divergence of the two families. This finding suggests that the multiple Adh loci in different monocot lineages are not the result of a single ancestral duplication but, rather, of multiple duplication events.