2 resultados para grape must

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell walls were isolated from the mesocarp of grape (Vitis vinifera L.) berries at developmental stages from before veraison through to the final ripe berry. Fluorescence and light microscopy of intact berries revealed no measurable change in cell wall thickness as the mesocarp cells expanded in the ripening fruit. Isolated walls were analyzed for their protein contents and amino acid compositions, and for changes in the composition and solubility of constituent polysaccharides during development. Increases in protein content after veraison were accompanied by an approximate 3-fold increase in hydroxyproline content. The type I arabinogalactan content of the pectic polysaccharides decreased from approximately 20 mol % of total wall polysaccharides to about 4 mol % of wall polysaccharides during berry development. Galacturonan content increased from 26 to 41 mol % of wall polysaccharides, and the galacturonan appeared to become more soluble as ripening progressed. After an initial decrease in the degree of esterification of pectic polysaccharides, no further changes were observed nor were there large variations in cellulose (30–35 mol % of wall polysaccharides) or xyloglucan (approximately 10 mol % of wall polysaccharides) contents. Overall, the results indicate that no major changes in cell wall polysaccharide composition occurred during softening of ripening grape berries, but that significant modification of specific polysaccharide components were observed, together with large changes in protein composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used a multiplex selection approach to construct a library of DNA-protein interaction sites recognized by many of the DNA-binding proteins present in a cell type. An estimated minimum of two-thirds of the binding sites present in a library prepared from activated Jurkat T cells represent authentic transcription factor binding sites. We used the library for isolation of "optimal" binding site probes that facilitated cloning of a factor and to identify binding activities induced within 2 hr of activation of Jurkat cells. Since a large fraction of the oligonucleotides obtained appear to represent "optimal" binding sites for sequence-specific DNA-binding proteins, it is feasible to construct a catalog of consensus binding sites for DNA-binding proteins in a given cell type. Qualitative and quantitative comparisons of the catalogs of binding site sequences from various cell types could provide valuable insights into the process of differentiation acting at the level of transcriptional control.