28 resultados para glycosylated

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We purified from pea (Pisum sativum) tissue an ≈40 kDa reversibly glycosylated polypeptide (RGP1) that can be glycosylated by UDP-Glc, UDP-Xyl, or UDP-Gal, and isolated a cDNA encoding it, apparently derived from a single-copy gene (Rgp1). Its predicted translation product has 364 aminoacyl residues and molecular mass of 41.5 kDa. RGP1 appears to be a membrane-peripheral protein. Immunogold labeling localizes it specifically to trans-Golgi dictyosomal cisternae. Along with other evidence, this suggests that RGP1 is involved in synthesis of xyloglucan and possibly other hemicelluloses. Corn (Zea mays) contains a biochemically similar and structurally homologous RGP1, which has been thought (it now seems mistakenly) to function in starch synthesis. The expressed sequence database also reveals close homologs of pea Rgp1 in Arabidopsis and rice (Oryza sativa). Rice possesses, in addition, a distinct but homologous sequence (Rgp2). RGP1 provides a polypeptide marker for Golgi membranes that should be useful in plant membrane studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saponins are glycosylated plant secondary metabolites found in many major food crops [Price, K. R., Johnson, I. T. & Fenwick, G. R. (1987) CRC Crit. Rev. Food Sci. Nutr. 26, 27–133]. Because many saponins have potent antifungal properties and are present in healthy plants in high concentrations, these molecules may act as preformed chemical barriers to fungal attack. The isolation of plant mutants defective in saponin biosynthesis represents a powerful strategy for evaluating the importance of these compounds in plant defense. The oat root saponin avenacin A-1 fluoresces under ultraviolet illumination [Crombie, L., Crombie, W. M. L. & Whiting, D. A. (1986) J. Chem. Soc. Perkins 1, 1917–1922], a property that is extremely rare among saponins. Here we have exploited this fluorescence to isolate saponin-deficient (sad) mutants of a diploid oat species, Avena strigosa. These sad mutants are compromised in their resistance to a variety of fungal pathogens, and a number of lines of evidence suggest that this compromised disease resistance is a direct consequence of saponin deficiency. Because saponins are widespread throughout the plant kingdom, this group of secondary metabolites may have general significance as antimicrobial phytoprotectants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type I interferons (IFNs) are helical cytokines that have diverse biological activities despite the fact that they appear to interact with the same receptor system. To achieve a better understanding of the structural basis for the different activities of α and β IFNs, we have determined the crystal structure of glycosylated human IFN-β at 2.2-Å resolution by molecular replacement. The molecule adopts a fold similar to that of the previously determined structures of murine IFN-β and human IFN-α2b but displays several distinct structural features. Like human IFN-α2b, human IFN-β contains a zinc-binding site at the interface of the two molecules in the asymmetric unit, raising the question of functional relevance for IFN-β dimers. However, unlike the human IFN-α2b dimer, in which homologous surfaces form the interface, human IFN-β dimerizes with contact surfaces from opposite sides of the molecule. The relevance of the structure to the effects of point mutations in IFN-β at specific exposed residues is discussed. A potential role of ligand–ligand interactions in the conformational assembly of IFN receptor components is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrophilic drugs are often poorly absorbed when administered orally. There has been considerable interest in the possibility of using absorption enhancers to promote absorption of polar molecules across membrane surfaces. The bile acids are one of the most widely investigated classes of absorption enhancers, but there is disagreement about what features of bile acid enhancers are responsible for their efficacy. We have designed a class of glycosylated bile acid derivatives to evaluate how increasing the hydrophilicity of the steroid nucleus affects the ability to transport polar molecules across membranes. Some of the glycosylated molecules are significantly more effective than taurocholate in promoting the intestinal absorption of a range of drugs, showing that hydrophobicity is not a critical parameter in transport efficacy, as previously suggested. Furthermore, the most effective glycosylated compound is also far less damaging to membranes than the best bile acid absorption promoters, presumably because it is more hydrophilic. The results reported here show that it is possible to decouple absorption-promoting activity from membrane damage, a finding that should spark interest in the design of new compounds to facilitate the delivery of polar drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influenza C virus CM2 protein is a small glycosylated integral membrane protein (115 residues) that spans the membrane once and contains a cleavable signal sequence at its N terminus. The coding region for CM2 (CM2 ORF) is located at the C terminus of the 342-amino acid (aa) ORF of a colinear mRNA transcript derived from influenza C virus RNA segment 6. Splicing of the colinear transcript introduces a translational stop codon into the ORF and the spliced mRNA encodes the viral matrix protein (CM1) (242 aa). The mechanism of CM2 translation was investigated by using in vitro and in vivo translation of RNA transcripts. It was found that the colinear mRNA derived from influenza C virus RNA segment 6 serves as the mRNA for CM2. Furthermore, CM2 translation does not depend on any of the three in-frame methionine residues located at the beginning of CM2 ORF. Rather, CM2 is a proteolytic cleavage product of the p42 protein product encoded by the colinear mRNA: a cleavage event that involves the recognition and cleavage of an internal signal peptide presumably by signal peptidase resident in the endoplasmic reticulum. Alteration of the predicted signal peptidase cleavage site by mutagenesis blocked generation of CM2. The other polypeptide species resulting from the cleavage of p42, designated p31, contains the CM1 coding region and an additional C-terminal 17 aa (formerly the CM2 signal peptide). Protein p31, in comparison to CM1, displays characteristics of an integral membrane protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prion protein consists of an ensemble of glycosylated variants or glycoforms. The enzymes that direct oligosaccharide processing, and hence control the glycan profile for any given glycoprotein, are often exquisitely sensitive to other events taking place within the cell in which the glycoprotein is expressed. Alterations in the populations of sugars attached to proteins can reflect changes caused, for example, by developmental processes or by disease. Here we report that normal (PrPC) and pathogenic (PrPSc) prion proteins (PrP) from Syrian hamsters contain the same set of at least 52 bi-, tri-, and tetraantennary N-linked oligosaccharides, although the relative proportions of individual glycans differ. This conservation of structure suggests that the conversion of PrPC into PrPSc is not confined to a subset of PrPs that contain specific sugars. Compared with PrPC, PrPSc contains decreased levels of glycans with bisecting GlcNAc residues and increased levels of tri- and tetraantennary sugars. This change is consistent with a decrease in the activity of N-acetylglucosaminyltransferase III (GnTIII) toward PrPC in cells where PrPSc is formed and argues that, in at least some cells forming PrPSc, the glycosylation machinery has been perturbed. The reduction in GnTIII activity is intriguing both with respect to the pathogenesis of the prion disease and the replication pathway for prions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design of hydroxyproline (Hyp)-rich glycoproteins (HRGPs) offers an approach for the structural and functional analysis of these wall components, which are broadly implicated in plant growth and development. HRGPs consist of multiple small repetitive “glycomodules” extensively O-glycosylated through the Hyp residues. The patterns of Hyp-O-glycosylation are putatively coded by the primary sequence as described by the Hyp contiguity hypothesis, which predicts contiguous Hyp residues to be attachment sites of small arabinooligosaccharides (1–5 Ara residues/Hyp); while clustered, noncontiguous Hyp residues are sites of arabinogalactan polysaccharide attachment. As a test, we designed two simple HRGPs as fusion proteins with green fluorescent protein. The first was a repetitive Ser-Hyp motif that encoded only clustered noncontiguous Hyp residues, predicted polysaccharide addition sites. The resulting glycoprotein had arabinogalactan polysaccharide O-linked to all Hyp residues. The second construct, based on the consensus sequence of a gum arabic HRGP, contained both arabinogalactan and arabinooligosaccharide addition sites and, as predicted, gave a product that contained both saccharide types. These results identify an O-glycosylation code of plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a new mAb raised against the mouse neuroepithelium, we have identified and cDNA-cloned prominin, an 858-amino acid-containing, 115-kDa glycoprotein. Prominin is a novel plasma membrane protein with an N-terminal extracellular domain, five transmembrane segments flanking two short cytoplasmic loops and two large glycosylated extracellular domains, and a cytoplasmic C-terminal domain. DNA sequences from Caenorhabditis elegans predict the existence of a protein with the same features, suggesting that prominin is conserved between vertebrates and invertebrates. Prominin is found not only in the neuroepithelium but also in various other epithelia of the mouse embryo. In the adult mouse, prominin has been detected in the brain ependymal layer, and in kidney tubules. In these epithelia, prominin is specific to the apical surface, where it is selectively associated with microvilli and microvilli-related structures. Remarkably, upon expression in CHO cells, prominin is preferentially localized to plasma membrane protrusions such as filopodia, lamellipodia, and microspikes. These observations imply that prominin contains information to be targeted to, and/or retained in, plasma membrane protrusions rather than the planar cell surface. Moreover, our results show that the mechanisms underlying targeting of membrane proteins to microvilli of epithelial cells and to plasma membrane protrusions of non-epithelial cells are highly related.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have isolated a novel cDNA, that appears to represent a new class of ion channels, by using the yeast two-hybrid system and the SH3 domain of the neural form of Src (N-src) as a bait. The encoded polypeptide, BCNG-1, is distantly related to cyclic nucleotide-gated channels and the voltage-gated channels, Eag and H-erg. BCNG-1 is expressed exclusively in the brain, as a glycosylated protein of ≈132 kDa. Immunohistochemical analysis indicates that BCNG-1 is preferentially expressed in specific subsets of neurons in the neocortex, hippocampus, and cerebellum, in particular pyramidal neurons and basket cells. Within individual neurons, the BCNG-1 protein is localized to either the dendrites or the axon terminals depending on the cell type. Southern blot analysis shows that several other BCNG-related sequences are present in the mouse genome, indicating the emergence of an entire subfamily of ion channel coding genes. These findings suggest the existence of a new type of ion channel, which is potentially able to modulate membrane excitability in the brain and could respond to regulation by cyclic nucleotides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polypeptides targeted to the yeast endoplasmic reticulum (ER) posttranslationally are thought to be kept in the cytoplasm in an unfolded state by Hsp70 chaperones before translocation. We show here that Escherichia coli β-lactamase associated with Hsp70, but adopted a native-like conformation before translocation in living Saccharomyces cerevisiae cells. β-Lactamase is a globular trypsin-resistant molecule in authentic form. For these studies, it was linked to the C terminus of a yeast polypeptide Hsp150Δ, which conferred posttranslational translocation and provided sites for O-glycosylation. We devised conditions to retard translocation of Hsp150Δ-β-lactamase. This enabled us to show by protease protection assays that an unglycosylated precursor was associated with the cytoplasmic surface of isolated microsomes, whereas a glycosylated form resided inside the vesicles. Both proteins were trypsin resistant and had similar β-lactamase activity and Km values for nitrocefin. The enzymatically active cytoplasmic intermediate could be chased into the ER, followed by secretion of the activity to the medium. Productive folding in the cytoplasm occurred in the absence of disulfide formation, whereas in the ER lumen, proper folding required oxidation of the sulfhydryls. This suggests that the polypeptide was refolded in the ER and consequently, at least partially unfolded for translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the role of carbohydrate in lysosomal protein transport, we engineered two novel glycosylation signals (Asn-X-Ser/Thr) into the cDNA of human procathepsin L, a lysosomal acid protease. We constructed six mutant cDNAs encoding glycosylation signals at mutant sites Asn-138, Asn-175, or both sites together, in the presence or absence of the wild-type Asn-204 site. We stably transfected wild-type and mutant cDNAs into NIH3T3 mouse fibroblasts and then used species-specific antibodies to determine the glycosylation status, phosphorylation, localization, and transport kinetics of recombinant human procathepsin L containing one, two, or three glycosylation sites. Both novel glycosylation sites were capable of being glycosylated, although Asn-175 was utilized only 30–50% of the time. Like the wild-type glycosylation at Asn-204, carbohydrates at Asn-138 and Asn-175 were completely sensitive to endoglycosidase H, and they were phosphorylated. Mutant proteins containing two carbohydrates were capable of being delivered to lysosomes, but there was not a consistent relationship between the efficiency of lysosomal delivery and carbohydrate content of the protein. Pulse-chase labeling revealed a unique biosynthetic pattern for proteins carrying the Asn-175 glycosylation sequence. Whereas wild-type procathepsin L and mutants bearing carbohydrate at Asn-138 appeared in lysosomes by about 60 min, proteins with carbohydrate at Asn-175 were processed to a lysosome-like polypeptide within 15 min. Temperature shift, brefeldin A, and NH4Cl experiments suggested that the rapid processing did not occur in the endoplasmic reticulum and that Asn-175 mutants could interact with the mannose 6-phosphate receptor. Taken together, our results are consistent with the interpretation that Asn-175 carbohydrate confers rapid transport to lysosomes. We may have identified a recognition domain in procathepsin L that is important for its interactions with the cellular transport machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The MAL proteolipid is a nonglycosylated integral membrane protein found in glycolipid-enriched membrane microdomains. In polarized epithelial Madin-Darby canine kidney cells, MAL is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin. MAL is thus part of the integral machinery for glycolipid-enriched membrane–mediated apical transport. At steady state, MAL is predominantly located in perinuclear vesicles that probably arise from the trans-Golgi network (TGN). To act on membrane traffic and to prevent their accumulation in the target compartment, integral membrane elements of the protein-sorting machinery should be itinerant proteins that cycle between the donor and target compartments. To establish whether MAL is an itinerant protein, we engineered the last extracellular loop of MAL by insertion of sequences containing the FLAG epitope or with sequences containing residues that became O-glycosylated within the cells or that displayed biotinylatable groups. The ectopic expression of these modified MAL proteins allowed us to investigate the surface expression of MAL and its movement through different compartments after internalization with the use of a combination of assays, including surface biotinylation, surface binding of anti-FLAG antibodies, neuraminidase sensitivity, and drug treatments. Immunofluorescence and flow cytometric analyses indicated that, in addition to its Golgi localization, MAL was also expressed on the cell surface, from which it was rapidly internalized. This retrieval implies transport through the endosomal pathway and requires endosomal acidification, because it can be inhibited by drugs such as chloroquine, monensin, and NH4Cl. Resialylation experiments of surface MAL treated with neuraminidase indicated that ∼30% of the internalized MAL molecules were delivered to the TGN, probably to start a new cycle of cargo transport. Together, these observations suggest that, as predicted for integral membrane members of the late protein transport machinery, MAL is an itinerant protein cycling between the TGN and the plasma membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The voltage- and Ca2+-activated K+ (KV,Ca) channel is expressed in a variety of polarized epithelial cells seemingly displaying a tissue-dependent apical-to-basolateral regionalization, as revealed by electrophysiology. Using domain-specific biotinylation and immunofluorescence we show that the human channel KV,Ca α-subunit (human Slowpoke channel, hSlo) is predominantly found in the apical plasma membrane domain of permanently transfected Madin-Darby canine kidney cells. Both the wild-type and a mutant hSlo protein lacking its only potential N-glycosylation site were efficiently transported to the cell surface and concentrated in the apical domain even when they were overexpressed to levels 200- to 300-fold higher than the density of intrinsic Slo channels. Furthermore, tunicamycin treatment did not prevent apical segregation of hSlo, indicating that endogenous glycosylated proteins (e.g., KV,Ca β-subunits) were not required. hSlo seems to display properties for lipid-raft targeting, as judged by its buoyant distribution in sucrose gradients after extraction with either detergent or sodium carbonate. The evidence indicates that the hSlo protein possesses intrinsic information for transport to the apical cell surface through a mechanism that may involve association with lipid rafts and that is independent of glycosylation of the channel itself or an associated protein. Thus, this particular polytopic model protein shows that glycosylation-independent apical pathways exist for endogenous membrane proteins in Madin-Darby canine kidney cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na+/Cl−-dependent neurotransmitter transporters form a superfamily of transmembrane proteins that share 12 membrane-spanning regions. To gain information about the quaternary structure of these transporter proteins, we heterologously expressed the glial glycine transporter GlyT1 and its neuronal homolog GlyT2 in Xenopus oocytes. By using metabolic labeling with [35S]methionine or surface labeling with a plasma membrane impermeable reagent followed by affinity purification, we separately analyzed the total cellular pools of newly synthesized GlyTs and its functional plasma membrane-bound fractions. Upon blue native gel electrophoresis, the surface-localized transporter proteins were found to exist exclusively in complex-glycosylated monomeric form, whereas a significant fraction of the intracellular GlyT1 and GlyT2 was core-glycosylated and oligomeric. In contrast, even after treatment with the crosslinker glutaraldehyde, surface GlyTs failed to migrate as oligomeric proteins. These results indicate that plasma membrane-bound GlyT1 and GlyT2 are monomeric proteins. Thus, Na+/Cl−-dependent neurotransmitter transporters do not require oligomerization for substrate translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma brucei, the protozoan parasite causing sleeping sickness, is transmitted by a tsetse fly vector. When the tsetse takes a blood meal from an infected human, it ingests bloodstream form trypanosomes that quickly differentiate into procyclic forms within the fly's midgut. During this process, the parasite loses the 107 molecules of variant surface glycoprotein that formed its surface coat, and it develops a new coat composed of several million procyclin molecules. Procyclins, the products of a small multigene family, are glycosyl phosphatidylinositol-anchored proteins containing characteristic amino acid repeats at the C terminus [either EP (EP procyclin, a form of procyclin rich in Glu-Pro repeats) or GPEET (GPEET procyclin, a form of procyclin rich in Glu-Pro-Glu-Glu-Thr repeats)]. We have used a sensitive and accurate mass spectrometry method to analyze the appearance of different procyclins during the establishment of midgut infections in tsetse flies. We found that different procyclin gene products are expressed in an orderly manner. Early in the infection (day 3), GPEET2 is the only procyclin detected. By day 7, however, GPEET2 disappears and is replaced by several isoforms of glycosylated EP, but not the unglycosylated isoform EP2. Unexpectedly, we discovered that the N-terminal domains of all procyclins are quantitatively removed by proteolysis in the fly, but not in culture. These findings suggest that one function of the protease-resistant C-terminal domain, containing the amino acid repeats, is to protect the parasite surface from digestive enzymes in the tsetse fly gut.