3 resultados para globulin
em National Center for Biotechnology Information - NCBI
Resumo:
Angiogenin (Ang), an inducer of neovascularization, is secreted by several types of human tumor cells and appears critical for their growth. The murine anti-Ang monoclonal antibody (mAb) 26–2F neutralizes the activities of Ang and dramatically prevents the establishment and metastatic dissemination of human tumor cell xenografts in athymic mice. However, for use clinically, the well-documented problem of the human anti-globulin antibody response known to occur with murine antibodies requires resolution. As a result, chimeric as well as totally humanized antibodies are currently being evaluated as therapeutic agents for the treatment of several pathological conditions, including malignancy. Therefore, we have constructed a chimeric mouse/human antibody based on the structure of mAb 26–2F. Complementary DNAs from the light and heavy chain variable regions of mAb 26–2F were cloned, sequenced, and genetically engineered by PCR for subcloning into expression vectors that contain human constant region sequences. Transfection of these vectors into nonproducing mouse myeloma cells resulted in the secretion of fully assembled tetrameric molecules. The chimeric antibody (cAb 26–2F) binds to Ang and inhibits its ribonucleolytic and angiogenic activities as potently as mAb 26–2F. Furthermore, the capacities of cAb 26–2F and its murine counterpart to suppress the formation of human breast cancer tumors in athymic mice are indistinguishable. Thus cAb 26–2F, with its retained neutralization capability and likely decreased immunogenicity, may be of use clinically for the treatment of human cancer and related disorders where pathological angiogenesis is a component.
Resumo:
Our preliminary family studies have suggested that some female first-degree relatives of women with polycystic ovary syndrome (PCOS) have hyperandrogenemia per se. It was our hypothesis that this may be a genetic trait and thus could represent a phenotype suitable for linkage analysis. To investigate this hypothesis, we examined 115 sisters of 80 probands with PCOS from unrelated families. PCOS was diagnosed by the combination of elevated serum androgen levels and ≤6 menses per year with the exclusion of secondary causes. The sisters were compared with 70 healthy age- and weight-comparable control women with regular menses, no clinical evidence of hyperandrogenemia, and normal glucose tolerance. Twenty-two percent of the sisters fulfilled diagnostic criteria for PCOS. In addition, 24% of the sisters had hyperandrogenemia and regular menstrual cycles. Circulating testosterone (T) and nonsex hormone-binding globulin-bound testosterone (uT) levels in both of these groups of sisters were significantly increased compared with unaffected sisters and control women (P < 0.0001 for both T and uT). Probands, sisters with PCOS, and hyperandrogenemic sisters had elevated serum luteinizing hormone levels compared with control women. We conclude that there is familial aggregation of hyperandrogenemia (with or without oligomenorrhea) in PCOS kindreds. In affected sisters, only one-half have oligomenorrhea and hyperandrogenemia characteristic of PCOS, whereas the remaining one-half have hyperandrogenemia per se. This familial aggregation of hyperandrogenemia in PCOS kindreds suggests that it is a genetic trait. We propose that hyperandrogenemia be used to assign affected status in linkage studies designed to identify PCOS genes.
Resumo:
Radiolabeled antibodies have shown promise for the treatment of lymphoma and for solid tumor targeting. Campath-1H is a humanized monoclonal antibody that reacts with the CD52 antigen present on human lymphoid and myeloid cells. Campath-1H is a gamma1 (G1) isotype that induces lymphopenia via an Fc-mediated mechanism(s). Isotype switches were engineered, and the resulting antibodies were expressed in NS0 mouse myeloma cells and biosynthetically radiolabeled with [35S]methionine. The forms included G1, G4, and a G4 variant that contained alanine substitutions at (EU numbering) Leu-235, Gly-237, and Glu-318. All isotypes bound antigen equivalently as assessed by target cell binding in vitro. The G4 variant had a greatly reduced capacity to interact with Fc receptor by virtue of reduced binding to THP-1 human myeloid cells and by a 1000-fold increase in EC50 to intermediate antibody-dependent cellular cytotoxicity. The pharmacokinetics of the isotypes were compared in CD-1 (nu/nu) mice bearing an experimental antigen-expressing tumor. The plasma half-life and tumor uptake were increased for the G4 variant. The G4 variant showed significantly less spleen, liver, and bone uptake but similar uptake in the lung, kidney, and stomach and lower tissue-to-blood ratios. Immunogenicity was assessed after repeated monthly administrations of unlabeled antibody in BALB/c mice. A 50% reduction in the incidence of anti-globulin response was observed for the G4 variant. These properties suggest that antibodies with reduced Fc receptor interaction merit additional study as potential targeting vehicles relative to other isotypes for radioimmunotherapy or situations where diminished normal tissue binding contributes to efficacy.