5 resultados para global optimization algorithms
em National Center for Biotechnology Information - NCBI
Resumo:
Recent improvements of a hierarchical ab initio or de novo approach for predicting both α and β structures of proteins are described. The united-residue energy function used in this procedure includes multibody interactions from a cumulant expansion of the free energy of polypeptide chains, with their relative weights determined by Z-score optimization. The critical initial stage of the hierarchical procedure involves a search of conformational space by the conformational space annealing (CSA) method, followed by optimization of an all-atom model. The procedure was assessed in a recent blind test of protein structure prediction (CASP4). The resulting lowest-energy structures of the target proteins (ranging in size from 70 to 244 residues) agreed with the experimental structures in many respects. The entire experimental structure of a cyclic α-helical protein of 70 residues was predicted to within 4.3 Å α-carbon (Cα) rms deviation (rmsd) whereas, for other α-helical proteins, fragments of roughly 60 residues were predicted to within 6.0 Å Cα rmsd. Whereas β structures can now be predicted with the new procedure, the success rate for α/β- and β-proteins is lower than that for α-proteins at present. For the β portions of α/β structures, the Cα rmsd's are less than 6.0 Å for contiguous fragments of 30–40 residues; for one target, three fragments (of length 10, 23, and 28 residues, respectively) formed a compact part of the tertiary structure with a Cα rmsd less than 6.0 Å. Overall, these results constitute an important step toward the ab initio prediction of protein structure solely from the amino acid sequence.
Resumo:
Dynamic importance weighting is proposed as a Monte Carlo method that has the capability to sample relevant parts of the configuration space even in the presence of many steep energy minima. The method relies on an additional dynamic variable (the importance weight) to help the system overcome steep barriers. A non-Metropolis theory is developed for the construction of such weighted samplers. Algorithms based on this method are designed for simulation and global optimization tasks arising from multimodal sampling, neural network training, and the traveling salesman problem. Numerical tests on these problems confirm the effectiveness of the method.
Resumo:
The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.
Resumo:
Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science.
Resumo:
In the maximum parsimony (MP) and minimum evolution (ME) methods of phylogenetic inference, evolutionary trees are constructed by searching for the topology that shows the minimum number of mutational changes required (M) and the smallest sum of branch lengths (S), respectively, whereas in the maximum likelihood (ML) method the topology showing the highest maximum likelihood (A) of observing a given data set is chosen. However, the theoretical basis of the optimization principle remains unclear. We therefore examined the relationships of M, S, and A for the MP, ME, and ML trees with those for the true tree by using computer simulation. The results show that M and S are generally greater for the true tree than for the MP and ME trees when the number of nucleotides examined (n) is relatively small, whereas A is generally lower for the true tree than for the ML tree. This finding indicates that the optimization principle tends to give incorrect topologies when n is small. To deal with this disturbing property of the optimization principle, we suggest that more attention should be given to testing the statistical reliability of an estimated tree rather than to finding the optimal tree with excessive efforts. When a reliability test is conducted, simplified MP, ME, and ML algorithms such as the neighbor-joining method generally give conclusions about phylogenetic inference very similar to those obtained by the more extensive tree search algorithms.