8 resultados para giant cell
em National Center for Biotechnology Information - NCBI
Resumo:
Differentiation of trophoblast giant cells in the rodent placenta is accompanied by exit from the mitotic cell cycle and onset of endoreduplication. Commitment to giant cell differentiation is under developmental control, involving down-regulation of Id1 and Id2, concomitant with up-regulation of the basic helix-loop-helix factor Hxt and acquisition of increased adhesiveness. Endoreduplication disrupts the alternation of DNA synthesis and mitosis that maintains euploid DNA content during proliferation. To determine how the mammalian endocycle is regulated, we examined the expression of the cyclins and cyclin-dependent kinases during the transition from replication to endoreduplication in the Rcho-1 rat choriocarcinoma cell line. We cultured these cells under conditions that gave relatively synchronous endoreduplication. This allowed us to study the events that occur during the transition from the mitotic cycle to the first endocycle. With giant cell differentiation, the cells switched cyclin D isoform expression from D3 to D1 and altered several checkpoint functions, acquiring a relative insensitivity to DNA-damaging agents and a coincident serum independence. The initiation of S phase during endocycles appeared to involve cycles of synthesis of cyclins E and A, and termination of S was associated with abrupt loss of cyclin A and E. Both cyclins were absent from gap phase cells, suggesting that their degradation may be necessary to allow reinitiation of the endocycle. The arrest of the mitotic cycle at the onset of endoreduplication was associated with a failure to assemble cyclin B/p34cdk1 complexes during the first endocycle. In subsequent endocycles, cyclin B expression was suppressed. Together these data suggest several points at which cell cycle regulation could be targeted to shift cells from a mitotic to an endoreduplicative cycle.
Resumo:
The enzyme poly(ADP-ribose) polymerase (Parp) catalyzes poly(ADP-ribosyl)ation reaction and is involved in DNA repair and cell death induction upon DNA damages. Meanwhile, poly(ADP-ribosyl)ation of chromosome-associated proteins is suggested to be implicated in the regulation of gene expression and cellular differentiation, both of which are important in tumorigenesis. To investigate directly the role of Parp deficiency in tumorigenicity and differentiation of embryonic stem (ES) cells during tumor formation, studies were conducted by using wild-type J1 (Parp+/+) ES cells and Parp+/− and Parp−/− ES clones generated by disrupting Parp exon 1. These ES cells, irrespective of the Parp genotype, produced tumors phenotypically similar to teratocarcinoma when injected s.c. into nude mice. Remarkably, all tumors derived from Parp−/− clones contained syncytiotrophoblastic giant cells (STGCs), which possess single or multiple megalo-nuclei. The STGCs were present within large areas of intratumoral hemorrhage. In contrast, neither STGC nor hemorrhage was observed in tumors of both wild-type J1 cells and Parp+/− clones. Electron microscopic examination showed that the STGCs possess microvilli on the cell surface and contained secretory granules in the cytoplasm. Furthermore, the cytoplasms of STGCs were strongly stained with antibody against mouse prolactin, which could similarly stain trophoblasts in placenta. These morphological and histochemical features indicate that the STGCs in teratocarcinoma-like tumors derived from Parp−/− clones belong to the trophoblast cell lineage. Our findings thus suggest that differentiation of ES cells into STGCs was possibly induced by the lack of Parp during the development of teratocarcinoma.
Resumo:
Development of protrusions in the cell is indispensable in the process of cell motility. Membrane protrusion has long been suggested to occur as a result of actin polymerization immediately beneath the cell membrane at the leading edge, but elucidation of the mechanism is insufficient because of the complexity of the cell. To study the mechanism, we prepared giant liposomes containing monomeric actin (100 or 200 μM) and introduced KCl into individual liposomes by an electroporation technique. On the electroporation, the giant liposomes deformed. Most importantly, protrusive structure grew from the liposomes containing 200 μM actin at rates (ranging from 0.3 to 0.7 μm/s) similar to those obtained in the cell. The deformation occurred in a time range (30 ∼ 100 s) similar to that of actin polymerization monitored in a cuvette (ca. 50 s). Concomitant with deformation, Brownian motion of micron-sized particles entrapped in the liposomes almost ceased. From these observations, we conclude that actin polymerization in the liposomes caused the protrusive formation.
Resumo:
Rearrangements of the high mobility group protein I-C (HMGI-C) gene, consisting in the loss of the carboxyl-terminal tail, have been frequently detected in benign human tumors of mesenchymal origin. We have previously demonstrated that transgenic (TG) mice carrying a truncated HMGI-C construct (HMGI-C/T) exhibit a giant phenotype together with a predominantly abdominal/pelvic lipomatosis. Here, we report that HMGI-C/T TG mice develop natural killer (NK)-T/NK cell lymphomas starting from 12 months of age. We found an increased expression of IL-2 and IL-15 proteins and their receptors in these lymphomas, and we demonstrate that HMGI-C/T protein positively regulates their expression in vitro. Therefore, the HMGI-C/T-mediated chronic stimulation of the IL-2/IL-15 pathway could be responsible for the onset of NK-T/NK cell lymphomas in HMGI-C/T TG mice.
Resumo:
We report here a rapid evaporation method that produces in high yield giant unilamellar vesicles up to 50 microns in diameter. The vesicles are obtained after only 2 min and can be prepared from different phospholipids, including L-alpha-phosphatidylcholine (lecithin), dipalmitoleoyl L-alpha-phosphatidylcholine, and beta-arachidonoyl gamma-palmitoyl L-alpha-phosphatidylcholine. Vesicles can be produced in distilled water and in Hepes, phosphate, and borate buffers in the pH range of 7.0 to 11.5 with ionic strengths up to 50 mM. The short preparation time allows encapsulation of labile molecular targets or enzymes with high catalytic activities. Cell-sized proteoliposomes have been prepared in which gamma-glutamyltransferase (EC 2.3.2.2) was functionally incorporated into the membrane wall.
Resumo:
Whole-cell voltage clamp was used to investigate the properties and spatial distribution of fast-deactivating (FD) Ca channels in squid giant fiber lobe (GFL) neurons. Squid FD Ca channels are reversibly blocked by the spider toxin omega-Agatoxin IVA with an IC50 of 240-420 nM with no effect on the kinetics of Ca channel gating. Channels with very similar properties are expressed in both somatic and axonal domains of cultured GFL neurons, but FD Ca channel conductance density is higher in axonal bulbs than in cell bodies at all times in culture. Channels presumably synthesized during culture are preferentially expressed in the growing bulbs, but bulbar Ca conductance density remains constant while Na conductance density increases, suggesting that processes determining the densities of Ca and Na channels in this extrasomatic domain are largely independent. These observations suggest that growing axonal bulbs in cultured GFL neurons are not composed entirely of "axonal" membranes because FD Ca channels are absent from the giant axon in situ but, rather, suggest a potential role for FD Ca channels in mediating neurotransmitter release at the motor terminals of the giant axon.
Resumo:
The role of heritable, population-wide cell damage in neoplastic development was studied in the 28 L subline of NIH 3T3 cells. These cells differ from the 17(3c) subline used previously for such studies in their lower frequency of "spontaneous" transformation at high population density and their greater capacity to produce large, dense transformed foci. Three cultures of the 28 L subline of NIH 3T3 cells were held under the constraint of confluence for 5 wk (5 wk 1 degree assay) and then assayed twice in succession (2 degrees and 3 degrees assays) for transformed foci and saturation density. After the 2 degrees assay, the cells were also passaged at low density to determine their exponential growth rates and cloned to determine the size and morphological features of the colonies. Concurrent measurements were made in each case with control cells that had been kept only in frequent low-density passages and cells that had been kept at confluence for only 2 wk (2 wk 1 degree). Two of the three cultures transferred from the 2 degrees assay of the 5 wk 1 degree cultures produced light transformed foci, and the third produced dense foci. The light focus-forming cultures grew to twice the control saturation density in their 2 degrees assay and 6-8 times the control density in the 3 degrees assay; saturation densities for the dense focus formers were about 10 times the control values in both assays. All three of the cultures transferred from the 2 degrees assay of the 5 wk 1 degree cultures multiplied at lower rates than controls at low densities, but the dense focus formers multiplied faster than the light focus formers. The reduced rates of multiplication of the light focus formers persisted for > 50 generations of exponential multiplication at low densities. Isolated colonies formed from single cells of the light focus formers were of a lower population density than controls; colonies formed by the dense focus formers were slightly denser than the controls but occupied only half the area. A much higher proportion of the colonies from the 5 wk 1 degree cultures than the controls consisted of giant cells or mixtures of giant and normal-appearing cells. The results reinforce the previous conclusion that the early increases in saturation density and light focus formation are associated with, and perhaps caused by, heritable, population-wide damage to cells that is essentially epigenetic in nature. The more advanced transformation characterized by large increases in saturation density and dense focus formation could have originated from rare genetic changes, such as chromosome rearrangements, known to occur at an elevated frequency in cells destabilized by antecedent cellular damage.