3 resultados para geochronology and radio isotopes

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A densely sampled, diverse new fauna from the uppermost Cedar Mountain Formation, Utah, indicates that the basic pattern of faunal composition for the Late Cretaceous of North America was already established by the Albian-Cenomanian boundary. Multiple, concordant 40Ar/39Ar determinations from a volcanic ash associated with the fauna have an average age of 98.39 ± 0.07 million years. The fauna of the Cedar Mountain Formation records the first global appearance of hadrosaurid dinosaurs, advanced lizard (e.g., Helodermatidae), and mammal (e.g., Marsupialia) groups, and the first North American appearance of other taxa such as tyrannosaurids, pachycephalosaurs, and snakes. Although the origin of many groups is unclear, combined biostratigraphic and phylogenetic evidence suggests an Old World, specifically Asian, origin for some of the taxa, an hypothesis that is consistent with existing evidence from tectonics and marine invertebrates. Large-bodied herbivores are mainly represented by low-level browsers, ornithopod dinosaurs, whose radiations have been hypothesized to be related to the initial diversification of angiosperm plants. Diversity at the largest body sizes (>106 g) is low, in contrast to both preceding and succeeding faunas; sauropods, which underwent demise in the Northern hemisphere coincident with the radiation of angiosperms, apparently went temporarily unreplaced by other megaherbivores. Morphologic and taxonomic diversity among small, omnivorous mammals, multituberculates, is also low. A later apparent increase in diversity occurred during the Campanian, coincident with the appearance of major fruit types among angiosperms, suggesting the possibility of adaptive response to new resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a discussion of the status of the field of coral geochemistry as it relates to the recovery of past records of ocean chemistry, ocean circulation, and climate. The first part is a brief review of coral biology, density banding, and other important factors involved in understanding corals as proxies of environmental variables. The second part is a synthesis of the information available to date on extracting records of the carbon cycle and climate change. It is clear from these proxy records that decade time-scale variability of mixing processes in the oceans is a dominant signal. That Western and Eastern tropical Pacific El Niño-Southern Oscillation (ENSO) records differ is an important piece of the puzzle for understanding regional and global climate change. Input of anthropogenic CO2 to the oceans as observed by 13C and 14C isotopes in corals is partially obscured by natural variability. Nonetheless, the general trend over time toward lower δ18O values at numerous sites in the world’s tropical oceans suggests a gradual warming and/or freshening of the surface ocean over the past century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical and isotopic compositions of oceanic biogenic and authigenic minerals contain invaluable information on the evolution of seawater, hence on the history of interaction between tectonics, climate, ocean circulation, and the evolution of life. Important advances and greater understanding of (a) key minor and trace element cycles with various residence times, (b) isotopic sources and sinks and fractionation behaviors, and (c) potential diagenetic problems, as well as developments in high-precision instrumentation, recently have been achieved. These advances provided new compelling evidence that neither gradualism nor uniformitarianism can explain many of the new important discoveries obtained from the chemistry and isotopic compositions of oceanic minerals. Presently, the best-developed geochemical proxies in biogenic carbonates are 18O/16O and Sr/Ca ratios (possibly Mg/Ca) for temperature; 87Sr/86Sr for input sources, Cd/Ca and Ba/Ca ratios for phosphate and alkalinity concentrations, respectively, thus also for ocean circulation; 13C/12C for ocean productivity; B isotopes for seawater pH;, U, Th isotopes, and 14C for dating; and Sr and Mn concentrations for diagenesis. The oceanic authigenic minerals most widely used for chemical paleoceanography are barite, evaporite sulfates, and hydrogenous ferromanganese nodules. Marine barite is an effective alternative monitor of seawater 87Sr/86Sr, especially where carbonates are diagenetically altered or absent. It also provides a high-resolution record of seawater sulfate S isotopes, (evaporite sulfates only carry an episodic record), with new insights on factors affecting the S and C cycles and atmospheric oxygen. High-resolution studies of Sr, Nd, and Pb isotopes of well-dated ferromanganese nodules contain invaluable records on climate driven changes in oceanic circulation.