14 resultados para genesis of coal

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Painful peripheral neuropathies are precipitated by nerve injury from disease or trauma. All such injuries will be accompanied by an inflammatory reaction, a neuritis, that will mobilize the immune system. The role of the inflammation itself is difficult to determine in the presence of structural damage to the nerve. A method has been devised to produce a focal neuritis in the rat sciatic nerve that involves no more than trivial structural damage to the nerve. This experimental focal neuritis produces neuropathic pain sensations (heat- and mechano-hyperalgesia, and cold- and mechano-allodynia) in the ipsilateral hind paw. The abnormal pain sensations begin in 1–2 days and last for 4–6 days, with a subsequent return to normal. These results suggest that there is a neuroimmune interaction that occurs at the outset of nerve injury (and perhaps episodically over time in slow developing conditions like diabetic neuropathy) that produces neuropathic pain. The short duration of the phenomena suggest that they may prime the system for more slowly developing mechanisms of abnormal pain (e.g., ectopic discharge in axotomized primary afferent neurons) that underlie the chronic phase of painful neuropathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural crest cells arise from the ectoderm and are first recognizable as discrete cells in the chicken embryo when they emerge from the neural tube. Despite the classical view that neural crest precursors are a distinct population lying between epidermis and neuroepithelium, our results demonstrate that they are not a segregated population. Cell lineage analyses have demonstrated that individual precursor cells within the neural folds can give rise to epidermal, neural crest, and neural tube derivatives. Interactions between the neural plate and epidermis can generate neural crest cells, since juxtaposition of these tissues at early stages results in the formation of neural crest cells at the interface. Inductive interactions between the epidermis and neural plate can also result in "dorsalization" of the neural plate, as assayed by the expression of the Wnt transcripts characteristic of the dorsal neural tube. The competence of the neural plate changes with time, however, such that interaction of early neural plate with epidermis generates only neural crest cells, whereas interaction of slightly older neural plate with epidermis generates neural crest cells and Wnt-expressing cells. At cranial levels, neuroepithelial cells can regulate to generate neural crest cells when the endogenous neural folds are removed, probably via interaction of the remaining neural tube with the epidermis. Taken together, these experiments demonstrate that: (i) progenitor cells in the neural folds are multipotent, having the ability to form multiple ectodermal derivatives, including epidermal, neural crest, and neural tube cells; (ii) the neural crest is an induced population that arises by interactions between the neural plate and the epidermis; and (iii) the competence of the neural plate to respond to inductive interactions changes as a function of embryonic age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parasitic strategies are widely distributed in the plant kingdom and frequently involve coupling parasite organogenesis with cues from the host. In Striga asiatica, for example, the cues that initiate the development of the host attachment organ, the haustorium, originate in the host and trigger the transition from vegetative to parasitic mode in the root meristem. This system therefore offers a unique opportunity to study the signals and mechanisms that control plant cell morphogenesis. Here we establish that the biological activity of structural analogs of the natural inducer displays a marked dependence on redox potential and suggest the existence of a semiquinone intermediate. Building on chemistry that exploits the energetics of such an intermediate, cyclopropyl-p-benzoquinone (CPBQ) is shown to be a specific inhibitor of haustorial development. These data are consistent with a model where haustorial development is initiated by the completion of a redox circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography studies were conducted during genesis of moderate thirst by rapid i.v. infusion of hypertonic saline (0.51 M) and after satiation of thirst by drinking water. The correlation of regional cerebral blood flow with the change in the plasma Na concentration showed a significant group of cerebral activations in the anterior cingulate region and also a site in the middle temporal gyrus and in the periaqueductal gray. Strongest deactivations occurred in the parahippocampal and frontal gyri. The data are consistent with an important role of the anterior cingulate in the genesis of thirst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Overexpression of the MYC protooncogene has been implicated in the genesis of diverse human tumors. Tumorigenesis induced by MYC has been attributed to sustained effects on proliferation and differentiation. Here we report that MYC may also contribute to tumorigenesis by destabilizing the cellular genome. A transient excess of MYC activity increased tumorigenicity of Rat1A cells by at least 50-fold. The increase persisted for >30 days after the return of MYC activity to normal levels. The brief surfeit of MYC activity was accompanied by evidence of genomic instability, including karyotypic abnormalities, gene amplification, and hypersensitivity to DNA-damaging agents. MYC also induced genomic destabilization in normal human fibroblasts, although these cells did not become tumorigenic. Stimulation of Rat1A cells with MYC accelerated their passage through G1/S. Moreover, MYC could force normal human fibroblasts to transit G1 and S after treatment with N-(phosphonoacetyl)-l-aspartate (PALA) at concentrations that normally lead to arrest in S phase by checkpoint mechanisms. Instead, the cells subsequently appeared to arrest in G2. We suggest that the accelerated passage through G1 was mutagenic but that the effect of MYC permitted a checkpoint response only after G2 had been reached. Thus, MYC may contribute to tumorigenesis through a dominant mutator effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell wall deposition is a key process in the formation, growth, and differentiation of plant cells. The most important structural components of the wall are long cellulose microfibrils, which are synthesized by synthases embedded in the plasma membrane. A fundamental question is how the microfibrils become oriented during deposition at the plasma membrane. The current textbook explanation for the orientation mechanism is a guidance system mediated by cortical microtubules. However, too many contraindications are known in secondary cell walls for this to be a universal mechanism, particularly in the case of helicoidal arrangements, which occur in many situations. An additional construction mechanism involves liquid crystalline self-assembly [A. C. Neville (1993) Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge Univ. Press, Cambridge, U.K.)], but the required amount of bulk material that is able to equilibrate thermally is not normally present at any stage of the wall deposition process. Therefore, we have asked whether the complex ordered texture of helicoidal cell walls can be formed in the absence of direct cellular guidance mechanisms. We propose that they can be formed by a mechanism that is based on geometrical considerations. It explains the genesis of the complicated helicoidal texture and shows that the cell has intrinsic, versatile tools for creating a variety of textures. A compelling feature of the model is that local rules generate global order, a typical phenomenon of life.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Overexpression of the proto-oncogene MYC has been implicated in the genesis of diverse human cancers. One explanation for the role of MYC in tumorigenesis has been that this gene might drive cells inappropriately through the division cycle, leading to the relentless proliferation characteristic of the neoplastic phenotype. Herein, we report that the overexpression of MYC alone cannot sustain the division cycle of normal cells but instead leads to their arrest in G2. We used an inducible form of the MYC protein to stimulate normal human and rodent fibroblasts. The stimulated cells passed through G1 and S but arrested in G2 and frequently became aneuploid, presumably as a result of inappropriate reinitiation of DNA synthesis. Absence of the tumor suppressor gene p53 or its downstream effector p21 reduced the frequency of both G2 arrest and aneuploidy, apparently by compromising the G2 checkpoint control. Thus, relaxation of the G2 checkpoint may be an essential early event in tumorigenesis by MYC. The loss of p53 function seems to be one mechanism by which this relaxation commonly occurs. These findings dramatize how multiple genetic events can collaborate to produce neoplastic cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The MLL-ELL fusion gene results from the translocation t(11;19)(q23;p13.1) that is associated with de novo and therapy-related acute myeloid leukemia. To study its transforming properties, we retrovirally transduced primary murine hematopoietic progenitors and assessed their growth properties both in vitro and in vivo. MLL-ELL increased the proliferation of myeloid colony-forming cells in methylcellulose cultures upon serial replating, whereas overexpression of ELL alone had no effect. We reconstituted lethally irradiated congenic mice with bone marrow progenitors transduced with MLL-ELL or the control MIE vector encoding the enhanced green fluorescent protein. When the peripheral blood of the mice was analyzed 11–13 weeks postreconstitution, we found that the engraftment of the MLL-ELL-transduced cells was superior to that of the MIE controls. At this time point, the contribution of the donor cells was normally distributed among the myeloid and nonmyeloid compartments. Although all of the MIE animals (n = 10) remained healthy for more than a year, all of the MLL-ELL mice (n = 20) succumbed to monoclonal or pauciclonal acute myeloid leukemias within 100–200 days. The leukemic cells were readily transplantable to secondary recipients and could be established as immortalized cell lines in liquid cultures. These studies demonstrate the enhancing effect of MLL-ELL on the proliferative potential of myeloid progenitors as well as its causal role in the genesis of acute myeloid leukemias.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant chloroplasts originated from an endosymbiotic event by which an ancestor of contemporary cyanobacteria was engulfed by an early eukaryotic cell and then transformed into an organelle. Oxygenic photosynthesis is the specific feature of cyanobacteria and chloroplasts, and the photosynthetic machinery resides in an internal membrane system, the thylakoids. The origin and genesis of thylakoid membranes, which are essential for oxygenic photosynthesis, are still an enigma. Vipp1 (vesicle-inducing protein in plastids 1) is a protein located in both the inner envelope and the thylakoids of Pisum sativum and Arabidopsis thaliana. In Arabidopsis disruption of the VIPP1 gene severely affects the plant's ability to form properly structured thylakoids and as a consequence to carry out photosynthesis. In contrast, Vipp1 in Synechocystis appears to be located exclusively in the plasma membrane. Yet, as in higher plants, disruption of the VIPP1 gene locus leads to the complete loss of thylakoid formation. So far VIPP1 genes are found only in organisms carrying out oxygenic photosynthesis. They share sequence homology with a subunit encoded by the bacterial phage shock operon (PspA) but differ from PspA by a C-terminal extension of about 30 amino acids. In two cyanobacteria, Synechocystis and Anabaena, both a VIPP1 and a pspA gene are present, and phylogenetic analysis indicates that VIPP1 originated from a gene duplication of the latter and thereafter acquired its new function. It also appears that the C-terminal extension that discriminates VIPP1 proteins from PspA is important for its function in thylakoid formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hippocampus and septum play central roles in one of the most important spheres of brain function: learning and memory. Although their topographic connections have been known for two decades and topography may be critical for cognitive functions, the basis for hippocamposeptal topographic projection is unknown. We now report for the first time that Elf-1, a membrane-bound eph family ligand, is a candidate molecular tag for the genesis of the hippocamposeptal topographic projection. Elf-1 is expressed in an increasing gradient from dorsal to ventral septum. Furthermore, Elf-1 selectively allows growth of neurites from topographically appropriate lateral hippocampal neurons, while inhibiting neurite outgrowth by medial hippocampal neurons. Complementary to the expression of Elf-1, an eph family receptor, Bsk, is expressed in the hippocampus in a lateral to medial gradient, consistent with a function as a receptor for Elf-1. Further, Elf-1 specifically bound Bsk, eliciting tyrosine kinase activity. We conclude that the Elf-1/Bsk ligand-receptor pair exhibits traits of a chemoaffinity system for the organization of hippocamposeptal topographic projections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Overexpression of the Neu/ErbB-2 receptor tyrosine kinase has been implicated in the genesis of human breast cancer. Indeed, expression of either activated or wild-type neu in the mammary epithelium of transgenic mice results in the induction of mammary tumors. Previously, we have shown that many of the mammary tumors arising in transgenic mice expressing wild-type neu occur through somatic activating mutations within the neu transgene itself. Here we demonstrate that these mutations promote dimerization of the Neu receptor through the formation of disulfide bonds, resulting in its constitutive activation. To explore the role of conserved cysteine residues within the region deleted in these altered Neu proteins, we examined the transforming potential of a series of Neu receptors in which the individual cysteine residues were mutated. These analyses indicated that mutation of certain cysteine residues resulted in the oncogenic activation of Neu. The increased transforming activity displayed by the altered receptors correlated with constitutive dimerization that occurred in a disulfide bond-dependent manner. We further demonstrate that addition of 2-mercaptoethanol to the culture medium interfered with the specific transforming activity of the mutant Neu receptors. These observations suggest that oncogenic activation of Neu results from constitutive disulfide bond-dependent dimerization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The progression of animal life from the paleozoic ocean to rivers and diverse econiches on the planet's surface, as well as the subsequent reinvasion of the ocean, involved many different stresses on ionic pattern, osmotic pressure, and volume of the extracellular fluid bathing body cells. The relatively constant ionic pattern of vertebrates reflects a genetic "set" of many regulatory mechanisms--particularly renal regulation. Renal regulation of ionic pattern when loss of fluid from the body is disproportionate relative to the extracellular fluid composition (e.g., gastric juice with vomiting and pancreatic secretion with diarrhea) makes manifest that a mechanism to produce a biologically relatively inactive extracellular anion HCO3- exists, whereas no comparable mechanism to produce a biologically inactive cation has evolved. Life in the ocean, which has three times the sodium concentration of extracellular fluid, involves quite different osmoregulatory stress to that in freshwater. Terrestrial life involves risk of desiccation and, in large areas of the planet, salt deficiency. Mechanisms integrated in the hypothalamus (the evolutionary ancient midbrain) control water retention and facilitate excretion of sodium, and also control the secretion of renin by the kidney. Over and above the multifactorial processes of excretion, hypothalamic sensors reacting to sodium concentration, as well as circumventricular organs sensors reacting to osmotic pressure and angiotensin II, subserve genesis of sodium hunger and thirst. These behaviors spectacularly augment the adaptive capacities of animals. Instinct (genotypic memory) and learning (phenotypic memory) are melded to give specific behavior apt to the metabolic status of the animal. The sensations, compelling emotions, and intentions generated by these vegetative systems focus the issue of the phylogenetic emergence of consciousness and whether primal awareness initially came from the interoreceptors and vegetative systems rather than the distance receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although immunosuppressive therapy minimizes the risk of graft failure due to acute rejection, transplant-associated arteriosclerosis of the coronary arteries remains a significant obstacle to the long-term survival of heart transplant recipients. The participation of specific inflammatory cell types in the genesis of this lesion was examined in a mouse model in which carotid arteries were transplanted across multiple histocompatibility barriers into seven mutant strains with immunologic defects. An acquired immune response--with the participation of CD4+ (helper) T cells, humoral antibody, and macrophages--was essential to the development of the concentric neointimal proliferation and luminal narrowing characteristic of transplant arteriosclerosis. CD8+ (cytotoxic) T cells and natural killer cells were not involved in the process. Arteries allografted into mice deficient in both T-cell receptors and humoral antibody showed almost no neointimal proliferation, whereas those grafted into mice deficient only in helper T cells, humoral antibody, or macrophages developed small neointimas. These small neointimas and the large neointimas of arteries grafted into control animals contained a similar number of inflammatory cells; however, smooth muscle cell number and collagen deposition were diminished in the small neointimas. Also, the degree of inflammatory reaction in the adventitia did not correlate with the size of the neointima. Thus, the reduction in neointimal size in arteries allografted into mice deficient in helper T cells, humoral antibody, or macrophages may be accounted for by a decrease in smooth muscle cell migration or proliferation.