31 resultados para galaxy formation and evolutionearly-type galaxiesspectral fittingsynthesis population modelling

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the “selective” cholesteryl ester (CE) uptake process, surface-associated lipoproteins [high density lipoprotein (HDL) and low density lipoprotein] are trapped in the space formed between closely apposed surface microvilli (microvillar channels) in hormone-stimulated steroidogenic cells. This is the same location where an HDL receptor (SR-BI) is found. In the current study, we sought to understand the relationship between SR-BI and selective CE uptake in a heterologous insect cell system. Sf9 (Spodoptera frugiperda) cells overexpressing recombinant SR-BI were examined for (i) SR-BI protein by Western blot analysis and light or electron immunomicroscopy, and (ii) selective lipoprotein CE uptake by the use of radiolabeled or fluorescent (BODIPY-CE)-labeled HDL. Noninfected or infected control Sf9 cells do not express SR-BI, show microvillar channels, or internalize CEs. An unexpected finding was the induction of a complex channel system in Sf9 cells expressing SR-BI. SR-BI-expressing cells showed many cell surface double-membraned channels, immunogold SR-BI, apolipoprotein (HDL) labeling of the channels, and high levels of selective HDL-CE uptake. Thus, double-membraned channels can be induced by expression of recombinant SR-BI in a heterologous system, and these specialized structures facilitate both the binding of HDL and selective HDL-CE uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal pathogens perceive and respond to molecules from the plant, triggering pathogenic development. Transduction of these signals may use heterotrimeric G proteins, and it is thought that protein phosphorylation cascades are also important. We have isolated a mitogen-activated protein kinase homolog from the corn pathogen Cochliobolus heterostrophus to test its role as a component of the transduction pathways. The new gene, CHK1, has a deduced amino acid sequence 90% identical to Pmk1 of the rice blast fungus Magnaporthe grisea and 59% identical to Fus3 of Saccharomyces cerevisiae. A series of chk1 deletion mutants has poorly developed aerial hyphae, autolysis, and no conidia. No pseudothecia are formed when a cross between two Δchk1 mutants is attempted. The ability of Δchk1 mutants to infect corn plants is reduced severely. The growth pattern of hyphae on a glass surface is strikingly altered from that of the wild type, forming coils or loops, but no appressoria. This set of phenotypes overlaps only partially with that of pmk1 mutants, the homologous gene of the rice blast fungus. In particular, sexual and asexual sporulation both require Chk1 function in Cochliobolus heterostrophus, in contrast to Pmk1, but perhaps more similar to yeast, where Fus3 transmits the mating signal. Chk1 is required for efficient colonization of leaf tissue, which can be compared with filamentous invasive growth of yeast, modulated through another closely related mitogen-activated protein kinase, Kss1. Ubiquitous signaling elements thus are used in diverse ways in different plant pathogens, perhaps the result of coevolution of the transducers and their targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the potential of type 1 interferons (IFNs) for the treatment of cancer, clinical experience with IFN protein therapy of solid tumors has been disappointing. IFN-β has potent antiproliferative activity against most human tumor cells in vitro in addition to its known immunomodulatory activities. The antiproliferative effect, however, relies on IFN-β concentrations that cannot be achieved by parenteral protein administration because of rapid protein clearance and systemic toxicities. We demonstrate here that ex vivo IFN-β gene transduction by a replication-defective adenovirus in as few as 1% of implanted cells blocked tumor formation. Direct in vivo IFN-β gene delivery into established tumors generated high local concentrations of IFN-β, inhibited tumor growth, and in many cases caused complete tumor regression. Because the mice were immune-deficient, it is likely that the anti-tumor effect was primarily through direct inhibition of tumor cell proliferation and survival. Based on these studies, we argue that local IFN-β gene therapy with replication-defective adenoviral vectors might be an effective treatment for some solid tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human polyomavirus JC (JCV) causes the central nervous system demyelinating disease progressive multifocal leukoencephalopathy. Previously, we showed that 40% of Caucasians in the United States excrete JCV in the urine as detected by PCR. We have now studied 68 Navaho from New Mexico, 25 Flathead from Montana, and 29 Chamorro from Guam. By using PCR amplification of a fragment of the VP1 gene, JCV DNA was detected in the urine of 45 (66%) Navaho, 14 (56%) Flathead, and 20 (69%) Chamorro. Genotyping of viral DNAs in these cohorts by cycle sequencing showed predominantly type 2 (Asian), rather than type 1 (European). Type 1 is the major type in the United States and Hungary. Type 2 can be further subdivided into 2A, 2B, and 2C. Type 2A is found in China and Japan. Type 2B is a subtype related to the East Asian type, and is now found in Europe and the United States. The large majority (56–89%) of strains excreted by Native Americans and Pacific Islanders were the type 2A subtype, consistent with the origin of these strains in Asia. These findings indicate that JCV infection of Native Americans predates contact with Europeans, and likely predates migration of Amerind ancestors across the Bering land bridge around 12,000–30,000 years ago. If JCV had already differentiated into stable modern genotypes and subtypes prior to first settlement, the origin of JCV in humans may date from 50,000 to 100,000 years ago or more. We conclude that JCV may have coevolved with the human species, and that it provides a convenient marker for human migrations in both prehistoric and modern times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diploid yeast develop pseudohyphae in response to nitrogen starvation, while haploid yeast produce invasive filaments which penetrate the agar in rich medium. We have identified a gene, FLO11, that encodes a cell wall protein which is critically required for both invasion and pseudohyphae formation in response to nitrogen starvation. FLO11 encodes a cell surface flocculin with a structure similar to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. Cells of the Saccharomyces cerevisiae strain Σ1278b with deletions of FLO11 do not form pseudohyphae as diploids nor invade agar as haploids. In rich media, FLO11 is regulated by mating type; it is expressed in haploid cells but not in diploids. Upon transfer to nitrogen starvation media, however, FLO11 transcripts accumulate in diploid cells, but not in haploids. Overexpression of FLO11 in diploid cells, which are otherwise not invasive, enables them to invade agar. Thus, the mating type repression of FLO11 in diploids grown in rich media suffices to explain the inability of these cells to invade. The promoter of FLO11 contains a consensus binding sequence for Ste12p and Tec1p, proteins known to cooperatively activate transcription of Ty1 elements and the TEC1 gene during development of pseudohyphae. Yeast with a deletion of STE12 does not express FLO11 transcripts, indicating that STE12 is required for FLO11 expression. These ste12-deletion strains also do not invade agar. However, the ability to invade can be restored by overexpressing FLO11. Activation of FLO11 may thus be the primary means by which Ste12p and Tec1p cause invasive growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid bodies, cytoplasmic inclusions that develop in cells associated with inflammation, are inducible structures that might participate in generating inflammatory eicosanoids. Cis-unsaturated fatty acids (arachidonic and oleic acids) rapidly induced lipid body formation in leukocytes, and this lipid body induction was inhibited by aspirin and nonsteroidal antiinflammatory drugs (NSAIDs). Several findings indicates that the inhibitory effect of aspirin and NSAIDs on lipid body formation was independent of cyclooxygenase (COX) inhibition. First, the non-COX inhibitor, sodium salicylate, was as potent as aspirin in inhibiting lipid body formation elicited by cis-fatty acids. Second, cis-fatty acid-induced lipid body formation was not impaired in macrophages from COX-1 or COX-2 genetically deficient mice. Finally, NSAIDs inhibited arachidonic acid-induced lipid body formation likewise in macrophages from wild-type and COX-1- and COX-2-deficient mice. An enhanced capacity to generate eicosanoids developed after 1 hr concordantly with cis-fatty acid-induced lipid body formation. Arachidonic and oleic acid-induced lipid body numbers correlated with the enhanced levels of leukotrienes B4 and C4 and prostaglandin E2 produced after submaximal calcium ionophore stimulation. Aspirin and NSAIDs inhibited both induced lipid body formation and the enhanced capacity for forming leukotrienes as well as prostaglandins. Our studies indicate that lipid body formation is an inducible early response in leukocytes that correlates with enhanced eicosanoid synthesis. Aspirin and NSAIDs, independent of COX inhibition, inhibit cis-fatty acid-induced lipid body formation in leukocytes and in concert inhibit the enhanced synthesis of leukotrienes and prostaglandins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copolymer 1 [poly(Y,E,A,K)] is a random synthetic amino acid copolymer of l-tyrosine, l-glutamic acid, l-alanine, and l-lysine that is effective both in suppression of experimental allergic encephalomyelitis and in the treatment of relapsing forms of multiple sclerosis. Copolymer 1 binds promiscuously and very efficiently to purified HLA-DR molecules within the peptide-binding groove. In the present study, YEAK and YEAK-related copolymers and type II collagen (CII) peptide 261–273, a candidate autoantigen in rheumatoid arthritis (RA), competed for binding to RA-associated HLA-DR molecules encoded by DRB1*0101 and DRB1*0401. Moreover, these copolymers (particularly YEAK, YAK, and YEK) inhibited the response of DR1- and DR4-restricted T cell clones to the CII epitope 261–273 by >50%. This direct evidence both for competitive interactions of these copolymers and CII peptide with RA-associated HLA-DR molecules and for inhibition of CII-specific T cell responses suggests that these compounds should be evaluated in animal models for rheumatoid arthritis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specificity of vesicular transport is determined by pair-wise interaction between receptors (SNAP receptors or SNAREs) associated with a transport vesicle and its target membrane. Two additional factors, N-ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment protein (SNAP) are ubiquitous components of vesicular transport pathways. However, the precise role they play is not known. On the basis that NSF and SNAP can be recruited to preformed SNARE complexes, it has been proposed that NSF- and SNAP-containing complexes are formed after SNARE-dependent docking of transport vesicles. This would enable ATPase-dependent complex disassembly to be coupled directly to membrane fusion. Alternatively, binding and release of NSF/SNAP may occur before vesicle docking, and perhaps be involved in the activation of SNAREs. To gain more information about the point at which so-called 20S complexes form during the transport vesicle cycle, we have examined NSF/SNAP/SNARE complex turnover on clathrin-coated vesicle–derived membranes in situ. This has been achieved under conditions in which the extent of membrane docking can be precisely monitored. We demonstrate by UV-dependent cross-linking experiments, coupled to laser light-scattering analysis of membranes, that complexes containing NSF, SNAP, and SNAREs will form and dissociate on the surface of undocked transport vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rab5 is a regulatory GTPase of vesicle docking and fusion that is involved in receptor-mediated endocytosis and pinocytosis. Introduction of active Rab5 in cells stimulates the rate of endocytosis and vesicle fusion, resulting in the formation of large endocytic vesicles, whereas dominant negative Rab5 inhibits vesicle fusion. Here we show that introduction of active Rab5 in fibroblasts also induced reorganization of the actin cytoskeleton but not of microtubule filaments, resulting in prominent lamellipodia formation. The Rab5-induced lamellipodia formation did not require activation of PI3-K or the GTPases Ras, Rac, Cdc42, or Rho, which are all strongly implicated in cytoskeletal reorganization. Furthermore, lamellipodia formation by insulin, Ras, or Rac was not affected by expression of dominant negative Rab5. In addition, cells expressing active Rab5 displayed a dramatic stimulation of cell migration, with the lamellipodia serving as the leading edge. Both lamellipodia formation and cell migration were dependent on actin polymerization but not on microtubules. These results demonstrate that Rab5 induces lamellipodia formation and cell migration and that the Rab5-induced lamellipodia formation occurs by a novel mechanism independent of, and distinct from, PI3-K, Ras, or Rho-family GTPases. Thus, Rab5 can control not only endocytosis but also actin cytoskeleton reorganization and cell migration, which provides strong support for an intricate relationship between these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While effector molecules produced by activated macrophages (including nitric oxide, tumor necrosis factor α, interleukin 1, etc.) help to eliminate pathogens, high levels of these molecules can be deleterious to the host itself. Despite their importance, the mechanisms modulating macrophage effector functions are poorly understood. This work introduces two key negative regulators that control the levels and duration of macrophage cytokine production. Vacuolar-type H+-ATPase (V-ATPase) and calcineurin (Cn) constitutively act in normal macrophages to suppress expression of inflammatory cytokines in the absence of specific activation and to inhibit macrophage cytokine responses induced by bacterial lipopolysaccharide (V-ATPase), interferon γ (V-ATPase and Cn), and calcium (Ca2+) flux (Cn). Cn and V-ATPase modulate effector gene expression at the mRNA level by inhibiting transcription factor NF-κB. This negative regulation by Cn is opposite to its crucial positive role in T cells, where it activates NFAT transcription factor(s) leading to expression of interleukin 2, tumor necrosis factor α, and other cytokine genes. The negative effects of V-ATPase and Cn on NF-κB-dependent gene expression are not limited to the macrophage lineage, as similar effects have been seen with a murine fibroblast cell line and with primary astrocytes.