2 resultados para gait energy image
em National Center for Biotechnology Information - NCBI
Resumo:
The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.
Resumo:
A simple model is described for calculating the electrostatic energy of lipid domains at the air-water interface, taking account of dipole-dipole repulsions between the lipid molecules themselves, as well as interactions between the molecular dipoles and image dipoles in the subphase. The model assumes that the molecular dipoles within the monolayer arise from the terminal methyl groups of the hydrophobic hydrocarbon chains of the lipid molecules, and that on average they are oriented perpendicular to the plane of the monolayer. With this model the role of the subphase is to enhance rather than suppress the effects of dipole-dipole repulsions.