5 resultados para gains from commitment

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Searching for nervous system candidates that could directly induce T cell cytokine secretion, I tested four neuropeptides (NPs): somatostatin, calcitonin gene-related peptide, neuropeptide Y, and substance P. Comparing neuropeptide-driven versus classical antigen-driven cytokine secretion from T helper cells Th0, Th1, and Th2 autoimmune-related T cell populations, I show that the tested NPs, in the absence of any additional factors, directly induce a marked secretion of cytokines [interleukin 2 (IL-2), interferon-γ, IL-4, and IL-10) from T cells. Furthermore, NPs drive distinct Th1 and Th2 populations to a “forbidden” cytokine secretion: secretion of Th2 cytokines from a Th1 T cell line and vice versa. Such a phenomenon cannot be induced by classical antigenic stimulation. My study suggests that the nervous system, through NPs interacting with their specific T cell-expressed receptors, can lead to the secretion of both typical and atypical cytokines, to the breakdown of the commitment to a distinct Th phenotype, and a potentially altered function and destiny of T cells in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal mouse marrow cells were stimulated by stem cell factor (SCF) to form dispersed or multicentric blast colonies containing progenitor cells committed to various hematopoietic lineages. Combination of the eosinophil-specific regulator interleukin 5 with SCF increased the frequency of colonies containing eosinophil-committed progenitor cells with multicentric but not dispersed blast colonies. Combination of thrombopoietin with SCF increased the frequency of colonies containing megakaryocyte-committed progenitor cells with both types of blast colony. Neither interleukin 5 nor thrombopoietin significantly altered the number or total cell content of blast colonies or progenitor cell numbers in blast colonies from those stimulated by SCF alone. No correlation was observed between total progenitor cell content and the presence or absence of either eosinophil or megakaryocyte progenitors in either type of blast colony. The data argue against a random process as being responsible for the formation of particular committed progenitor cells or the possibility that lineage-specific regulators merely enhance survival of such committed progenitor cells formed in developing blast colonies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously described how T and natural killer (NK) lineage commitment proceeds from common T/NK progenitors (p-T/NK) in the murine fetal thymus (FT), with the use of a clonal assay system capable of discriminating p-T/NK from unipotent T or NK lineage-committed progenitors (p-T and p-NK, respectively). The molecular mechanisms controlling the commitment processes, however, are yet to be defined. In this study, we investigated the progenitor activity of FT cells from Id2−/− mice that exhibit defective NK cell development. In the Id2−/− FT, NK cells were greatly reduced, and a cell population that exclusively contains p-NK in the wild-type thymus was completely missing. Id2−/− FT progenitors were unable to differentiate into NK cells in IL-2-supplemented-FT organ culture. Single progenitor analysis demonstrated that all Id2−/− fetal thymic progenitors are destined for the T cell lineage, whereas progenitors for T/NK, T, and NK cell lineages were found in the control. Interestingly, the total progenitor number was similar between Id2−/− and Id2+/+ embryos analyzed. Expression of Id2 was correlated with p-NK activity. Our results suggest that Id2 is indispensable in thymic NK cell development, where it most probably restricts bipotent T/NK progenitors to the NK cell lineage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensory patches in the ear of a vertebrate can be compared with the mechanosensory bristles of a fly. This comparison has led to the discovery that lateral inhibition mediated by the Notch cell–cell signaling pathway, first characterized in Drosophila and crucial for bristle development, also has a key role in controlling the pattern of sensory hair cells and supporting cells in the ear. We review the arguments for considering the sensory patches of the vertebrate ear and bristles of the insect to be homologous structures, evolved from a common ancestral mechanosensory organ, and we examine more closely the role of Notch signaling in each system. Using viral vectors to misexpress components of the Notch pathway in the chick ear, we show that a simple lateral-inhibition model based on feedback regulation of the Notch ligand Delta is inadequate for the ear just as it is for the fly bristle. The Notch ligand Serrate1, expressed in supporting cells in the ear, is regulated by lateral induction, not lateral inhibition; commitment to become a hair cell is not simply controlled by levels of expression of the Notch ligands Delta1, Serrate1, and Serrate2 in the neighbors of the nascent hair cell; and at least one factor, Numb, capable of blocking reception of lateral inhibition is concentrated in hair cells. These findings reinforce the parallels between the vertebrate ear and the fly bristle and show how study of the insect system can help us understand the vertebrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The t(2;13) translocation of alveolar rhabdomyosarcoma results in tumor-specific expression of a chimeric transcription factor containing the N-terminal DNA-binding domain of PAX3 and the C-terminal transactivation domain of FKHR. Here we have tested the hypothesis that PAX3-FKHR gains function relative to PAX3 as a consequence of switching PAX3 and FKHR transactivation domains, which were previously shown to have similar potency but distinct structural motifs. In transient cotransfection assays with human expression constructs, we have demonstrated the increased ability of PAX3-FKHR to activate transcription of a reporter gene located downstream of multimerized e5, PRS-9, or CD19 DNA-binding sites in three cell lines. For example, PAX3-FKHR was 100-fold more potent than PAX3 as an activator binding to e5 sites in NIH 3T3 cells. To compare transactivation potency independent of PAX3-specific DNA binding, we tested GAL4 fusions of full-length PAX3 and PAX3-FKHR or their respective C-terminal transactivation domains on a reporter with GAL4 DNA-binding sites. In this context, full-length PAX3-FKHR was also much more potent than PAX3. Additionally, the activity of each full-length protein was decreased relative to its C-terminal domain, demonstrating that N-terminal sequences are inhibitory. By deletion analysis, we mapped a bipartite cis-acting inhibitory domain to the same subregions within the DNA-binding domains of both PAX3 and PAX3-FKHR. We have shown, however, that the structurally distinct transactivation domains of PAX3 and PAX3-FKHR differ 10- to 100-fold in their susceptibility to inhibition, thus elucidating a mechanism by which PAX3 gains enhanced function during oncogenesis.