16 resultados para functional identity

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Arabidopsis MADS domain proteins AP1, AP3, PI, and AG specify floral organ identity. All of these proteins contain a MADS domain required for DNA binding and dimerization; a region termed L (linker between MADS domain and K domain), which plays an important role in dimerization specificity; the K domain, named for its similarity to the coiled-coil domain of keratin; and a C-terminal region of unknown function. To determine which regions of these proteins are responsible for their abilities to specify different organs, we have made a number of chimeric MADS box genes. The in vivo function of these chimeric genes was investigated by ectopic expression in transgenic Arabidopsis plants. The four proteins fall into two classes on the basis of regions responsible for their functional specificities. The L region and K domain define the functional specificities of AP3 and PI, while the MADS domain and L region define the functional specificities of AP1 and AG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used event-related functional MRI to investigate the neural bases of two categories of mental processes believed to contribute to performance of an alphabetization working memory task: memory storage and memory manipulation. Our delayed-response tasks required memory for the identity and position-in-the-display of items in two- or five-letter memory sets (to identify load-sensitive regions) or memory for the identity and relative position-in-the-alphabet of items in five-letter memory sets (to identify manipulation-sensitive regions). Results revealed voxels in the left perisylvian cortex of five of five subjects showing load sensitivity (as contrasted with alphabetization-sensitive voxels in this region in only one subject) and voxels of dorsolateral prefrontal cortex in all subjects showing alphabetization sensitivity (as contrasted with load-sensitive voxels in this region in two subjects). This double dissociation was reliable at the group level. These data are consistent with the hypothesis that the nonmnemonic executive control processes that can contribute to working memory function are primarily prefrontal cortex-mediated whereas mnemonic processes necessary for working memory storage are primarily posteriorly mediated. More broadly, they support the view that working memory is a faculty that arises from the coordinated interaction of computationally and neuroanatomically dissociable processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. In this paper, we devised a procedure for purifying eIF6 from rabbit reticulocyte lysates and immunochemically characterized the protein by using antibodies isolated from egg yolks of laying hens immunized with rabbit eIF6. By using these monospecific antibodies, a 1.096-kb human cDNA that encodes an eIF6 of 245 amino acids (calculated Mr 26,558) has been cloned and expressed in Escherichia coli. The purified recombinant human protein exhibits biochemical properties that are similar to eIF6 isolated from mammalian cell extracts. Database searches identified amino acid sequences from Saccharomyces cerevisiae, Drosophila, and the nematode Caenorhabditis elegans with significant identity to the deduced amino acid sequence of human eIF6, suggesting the presence of homologues of human eIF6 in these organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-10-related T cell-derived inducible factor (IL-TIF or IL-21) is a new cytokine structurally related to IL-10 and originally identified in the mouse as a gene induced by IL-9 in T cells and mast cells. Here, we report the cloning of the human IL-TIF cDNA, which shares 79% amino acid identity with mouse IL-TIF and 25% identity with human IL-10. Recombinant human IL-TIF was found to activate signal transducer and activator of transcription factors-1 and -3 in several hepatoma cell lines. IL-TIF stimulation of HepG2 human hepatoma cells up-regulated the production of acute phase reactants such as serum amyloid A, α1-antichymotrypsin, and haptoglobin. Although IL-10 and IL-TIF have distinct activities, antibodies directed against the β chain of the IL-10 receptor blocked the induction of acute phase reactants by IL-TIF, indicating that this chain is a common component of the IL-10 and IL-TIF receptors. Similar acute phase reactant induction was observed in mouse liver upon IL-TIF injection, and IL-TIF expression was found to be rapidly increased after lipopolysaccharide (LPS) injection, suggesting that this cytokine contributes to the inflammatory response in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early steps in the biosynthesis of Taxol involve the cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene followed by cytochrome P450-mediated hydroxylation at C5, acetylation of this intermediate, and a second cytochrome P450-dependent hydroxylation at C10 to yield taxadien-5α-acetoxy-10β-ol. Subsequent steps of the pathway involve additional cytochrome P450 catalyzed oxygenations and CoA-dependent acylations. The limited feasibility of reverse genetic cloning of cytochrome P450 oxygenases led to the use of Taxus cell cultures induced for Taxol production and the development of an approach based on differential display of mRNA-reverse transcription-PCR, which ultimately provided full-length forms of 13 unique but closely related cytochrome P450 sequences. Functional expression of these enzymes in yeast was monitored by in situ spectrophotometry coupled to in vivo screening of oxygenase activity by feeding taxoid substrates. This strategy yielded a family of taxoid-metabolizing enzymes and revealed the taxane 10β-hydroxylase as a 1494-bp cDNA that encodes a 498-residue cytochrome P450 capable of transforming taxadienyl acetate to the 10β-hydroxy derivative; the identity of this latter pathway intermediate was confirmed by chromatographic and spectrometric means. The 10β-hydroxylase represents the initial cytochrome P450 gene of Taxol biosynthesis to be isolated by an approach that should provide access to the remaining oxygenases of the pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonic anhydrase (CA) (EC 4.2.1.1) enzymes catalyze the reversible hydration of CO2, a reaction that is important in many physiological processes. We have cloned and sequenced a full-length cDNA encoding an intracellular β-CA from the unicellular green alga Coccomyxa. Nucleotide sequence data show that the isolated cDNA contains an open reading frame encoding a polypeptide of 227 amino acids. The predicted polypeptide is similar to β-type CAs from Escherichia coli and higher plants, with an identity of 26% to 30%. The Coccomyxa cDNA was overexpressed in E. coli, and the enzyme was purified and biochemically characterized. The mature protein is a homotetramer with an estimated molecular mass of 100 kD. The CO2-hydration activity of the Coccomyxa enzyme is comparable with that of the pea homolog. However, the activity of Coccomyxa CA is largely insensitive to oxidative conditions, in contrast to similar enzymes from most higher plants. Fractionation studies further showed that Coccomyxa CA is extrachloroplastic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binase, a member of a family of microbial guanyl-specific ribonucleases, catalyzes the endonucleotic cleavage of single-stranded RNA. It shares 82% amino acid identity with the well-studied protein barnase. We used NMR spectroscopy to study the millisecond dynamics of this small enzyme, using several methods including the measurement of residual dipolar couplings in solution. Our data show that the active site of binase is flanked by loops that are flexible at the 300-μs time scale. One of the catalytic residues, His-101, is located on such a flexible loop. In contrast, the other catalytic residue, Glu-72, is located on a β-sheet, and is static. The residues Phe-55, part of the guanine base recognition site, and Tyr-102, stabilizing the base, are the most dynamic. Our findings suggest that binase possesses an active site that has a well-defined bottom, but which has sides that are flexible to facilitate substrate access/egress, and to deliver one of the catalytic residues. The motion in these loops does not change on complexation with the inhibitor d(CGAG) and compares well with the maximum kcat (1,500 s−1) of these ribonucleases. This observation indicates that the NMR-measured loop motions reflect the opening necessary for product release, which is apparently rate limiting for the overall turnover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiogenin-related protein (Angrp), the putative product of a recently discovered mouse gene, shares 78% sequence identity with mouse angiogenin (Ang). In the present study, the relationship of Angrp to Ang has been investigated by producing both proteins in bacteria and comparing their functional properties. We find that mouse Ang is potently angiogenic, but Angrp is not, even when assayed at relatively high doses. A deficiency in catalytic capacity, which is essential for the biological activity of Ang, does not appear to underlie Angrp's lack of angiogenicity. In fact, Angrp has somewhat greater ribonucleolytic activity toward tRNA and dinucleotide substrates than does Ang. Instead, an inability to bind cellular receptors is implicated since Angrp does not inhibit Ang-induced angiogenesis. Poor conservation of the Ang receptor recognition sequence 58-69 in Angrp most likely contributes to this defect. However, other substitutions must also influence receptor binding since an Angrp quadruple mutant that is identical to Ang in this segment still lacks both angiogenic activity and the capacity to inhibit Ang. The functional differences between Ang and Angrp, together with evidence presented herein that Angrp is regulated differently than Ang, suggest that the roles of the two proteins in vivo may be quite distinct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of a proton-coupled electrogenic high-affinity peptide transporter in the apical membrane of tubular cells has been demonstrated by microperfusion studies and by use of brush border membrane vesicles. The transporter mediates tubular uptake of filtered di- and tripeptides and aminocephalosporin antibiotics. We have used expression cloning in Xenopus laevis oocytes for identification and characterization of the renal high-affinity peptide transporter. Injection of poly(A)+ RNA isolated from rabbit kidney cortex into oocytes resulted in expression of a pH-dependent transport activity for the aminocephalosporin antibiotic cefadroxil. After size fractionation of poly(A)+ RNA the transport activity was identified in the 3.0- to 5.0-kb fractions, which were used for construction of a cDNA library. The library was screened for expression of cefadroxil transport after injection of complementary RNA synthesized in vitro from different pools of clones. A single clone (rPepT2) was isolated that stimulated cefadroxil uptake into oocytes approximately 70-fold at a pH of 6.0. Kinetic analysis of cefadroxil uptake expressed by the transporter's complementary RNA showed a single saturable high-affinity transport system shared by dipeptides, tripeptides, and selected amino-beta-lactam antibiotics. Electrophysiological studies established that the transport activity is electrogenic and affected by membrane potential. Sequencing of the cDNA predicts a protein of 729 amino acids with 12 membrane-spanning domains. Although there is a significant amino acid sequence identity (47%) to the recently cloned peptide transporters from rabbit and human small intestine, the renal transporter shows distinct structural and functional differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent demonstration of the occurrence in rat brain and other nonpancreatic tissues of carboxypeptidase A (CPA) gene transcripts without associated catalytic activity could be ascribed to the presence of a soluble endogenous protein inhibitor. This tissue carboxypeptidase inhibitor (TCI), detected by the inhibition of added bovine pancreatic CPA, was purified from rat brain. Peptides were obtained by partial proteolysis of purified TCI, a protein of approximately 30 kDa, and starting from their sequences, a full-length cDNA encoding a 223-amino acid protein containing three potential phosphorylation sites was cloned from a cDNA library. Its identity with TCI was shown by expression in Escherichia coli of a recombinant protein recognized by antibodies raised against native TCI and display characteristic CPA-inhibiting activity. TCI appears as a hardly reversible, non-competitive, and potent inhibitor of CPA1 and CPA2 (Ki approximately 3 nM) and mast-cell CPA (Ki = 16 nM) and inactive on various other proteases. This pattern of selectivity might be attributable to a limited homology of a 11-amino acid sequence with sequences within the activation segments of CPA and CPB known to interact with residues within their active sites. The widespread expression of TCI in a number of tissues (e.g., brain, lung, or digestive tract) and its apparently cytosolic localization point to a rather general functional role, e.g., in the control of cytosolic protein degradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pp70/85-kDa S6 kinases, collectively referred to as pp70S6k, are thought to participate in transit through the G1 phase of the cell cycle. pp70S6k regulates the phosphorylation of the 40S ribosomal protein S6 and the transcription factor CREM tau. pp70S6k is regulated by serine/threonine phosphorylation, and although 1-phosphatidylinositol 3-kinase and phospholipase C have been implicated as upstream regulators, the mechanism of activation and identity of the upstream pp70S6k kinases remain unknown. To improve our understanding of how this mitogen-stimulated protein kinase is regulated by growth factors and the immunosuppressant rapamycin, we have initiated a structure/function analysis of pp70S6k. Our results indicate that both the N and C termini participate in the complex regulation of pp70S6k activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cDNA encoding rat oxidosqualene lanosterol-cyclase [lanosterol synthase; (S)-2,3-epoxysqualene mutase (cyclizing, lanosterol-forming), EC 5.4.99.7] was cloned and sequenced by a combination of PCR amplification, using primers based on internal amino acid sequence of the purified enzyme, and cDNA library screening by oligonucleotide hybridization. An open reading frame of 2199 bp encodes a M(r) 83,321 protein with 733 amino acids. The deduced amino acid sequence of the rat enzyme showed significant homology to the known oxidosqualene cyclases (OSCs) from yeast and plant (39-44% identity) and still retained 17-26% identity to two bacterial squalene cyclases (EC 5.4.99.-). Like other cyclases, the rat enzyme is rich in aromatic amino acids and contains five so-called QW motifs, highly conserved regions with a repetitive beta-strand turn motif. The binding site sequence for the 29-methylidene-2,3-oxidosqualene (29-MOS), a mechanism-based irreversible inhibitor specific for the vertebrate cyclase, is well-conserved in all known OSCs. The hydropathy plot revealed a rather hydrophilic N-terminal region and the absence of a hydrophobic signal peptide. Unexpectedly, this microsomal membrane-associated enzyme showed no clearly delineated transmembrane domain. A full-length cDNA was constructed and subcloned into a pYEUra3 plasmid, selected in Escherichia coli cells, and used to transform the OSC-deficient uracil-auxotrophic SGL9 strain of Saccharomyces cerevisiae. The recombinant rat OSC expressed was efficiently labeled by the mechanism-based inhibitor [3H]29-MOS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequenin was originally identified in Drosophila melanogaster as a Ca(2+)-binding protein facilitating transmitter release at the neuromuscular junction. We have cloned the Xenopus frequenin (Xfreq) by PCR using degenerate primers combined with low-stringency hybridization. The deduced protein has 70% identity with Drosophila frequenin and about 38-58% identity with other Ca(2+)-binding proteins. The most prominent features are the four EF-hands, Ca(2+)-binding motifs. Xfreq mRNA is abundant in the brain and virtually nondetectable from adult muscle. Western blot analysis indicated that Xfreq is highly concentrated in the adult brain and is absent from nonneural tissues such as heart and kidney. During development, the expression of the protein correlated well with the maturation of neuromuscular synapses. To determine the function of Xfreq at the developing neuromuscular junction, the recombinant protein was introduced into Xenopus embryonic spinal neurons by early blastomere injection. Synapses made by spinal neurons containing exogenous Xfreq exhibited a much higher synaptic efficacy. These results provide direct evidence that frequenin enhances transmitter release at the vertebrate neuromuscular synapse and suggest its potential role in synaptic development and plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.