4 resultados para freeze fracture
em National Center for Biotechnology Information - NCBI
Resumo:
A Ca2+-dependent synaptic vesicle-recycling pathway emanating from the plasma membrane adjacent to the dense body at the active zone has been demonstrated by blocking pinch-off of recycling membrane by using the Drosophila mutant, shibire. Exposure of wild-type Drosophila synapses to low Ca2+/high Mg2+ saline is shown here to block this active zone recycling pathway at the stage in which invaginations of the plasma membrane develop adjacent to the dense body. These observations, in combination with our previous demonstration that exposure to high Ca2+ causes “docked” vesicles to accumulate in the identical location where active zone endocytosis occurs, suggest the possibility that a vesicle-recycling pathway emanating from the active zone may exist that is stimulated by exposure to elevated Ca2+, thereby causing an increase in vesicle recycling, and is suppressed by exposure to low Ca2+ saline, thereby blocking newly forming vesicles at the invagination stage. The presence of a Ca2+-dependent endocytotic pathway at the active zone opens up the following possibilities: (i) electron microscopic omega-shaped images (and their equivalent, freeze fracture dimples) observed at the active zone adjacent to the dense body could represent endocytotic images (newly forming vesicles) rather than exocytotic images; (ii) vesicles observed attached to the plasma membrane adjacent to the dense body could represent newly formed vesicles rather than vesicles “docked” for release of transmitter.
Resumo:
Phospholipids when dispersed in excess water generally form vesicular membrane structures. Cryo-transmission and freeze-fracture electron microscopy are combined here with calorimetry and viscometry to demonstrate the reversible conversion of phosphatidylglycerol aqueous vesicle suspensions to a three-dimensional structure that consists of extended bilayer networks. Thermodynamic analysis indicates that the structural transitions arise from two effects: (i) the enhanced membrane elasticity accompanying the lipid state fluctuations on chain melting and (ii) solvent-associated interactions (including electrostatics) that favor a change in membrane curvature. The material properties of the hydrogels and their reversible formation offer the possibility of future applications, for example in drug delivery, the design of structural switches, or for understanding vesicle fusion or fission processes.
Resumo:
Freeze-fracture electron microscopy was used to study the structure of a human neuronal glutamate transporter (EAAT3). EAAT3 was expressed in Xenopus laevis oocytes, and its function was correlated with the total number of transporters in the plasma membrane of the same cells. Function was assayed as the maximum charge moved in response to a series of transmembrane voltage pulses. The number of transporters in the plasma membrane was determined from the density of a distinct 10-nm freeze-fracture particle, which appeared in the protoplasmic face only after EAAT3 expression. The linear correlation between EAAT3 maximum carrier-mediated charge and the total number of the 10-nm particles suggested that this particle represented functional EAAT3 in the plasma membrane. The cross-sectional area of EAAT3 in the plasma membrane (48 ± 5 nm2) predicted 35 ± 3 transmembrane α-helices in the transporter complex. This information along with secondary structure models (6–10 transmembrane α-helices) suggested an oligomeric state for EAAT3. EAAT3 particles were pentagonal in shape in which five domains could be identified. They exhibited fivefold symmetry because they appeared as equilateral pentagons and the angle at the vertices was 110°. Each domain appeared to contribute to an extracellular mass that projects ≈3 nm into the extracellular space. Projections from all five domains taper toward an axis passing through the center of the pentagon, giving the transporter complex the appearance of a penton-based pyramid. The pentameric structure of EAAT3 offers new insights into its function as both a glutamate transporter and a glutamate-gated chloride channel.
Resumo:
Previously, synaptic activity in the spinal cord of adult mammals was attributed exclusively to chemical neurotransmission. In this study, evidence was obtained for the existence, relative abundance, and widespread distribution of "mixed" (chemical and electrical) synapses on neurons throughout the spinal cords of adult mammals. Using combined confocal microscopy and "grid-mapped freeze fracture," 36 mixed synapses containing 88 "micro" gap junctions (median = 45 connexons) were found and mapped to 33 interneurons and motor neurons in Rexed laminae III-IX in cervical, thoracic, and lumbosacral spinal cords of adult male and female rats. Gap junctions were adjacent to presumptive active zones, where even small gap junctions would be expected to increase synaptic efficacy. Two morphological types of mixed synapse were discerned. One type contained distinctive active zones consisting of "nested" concentric toroidal deformations of pre- and postsynaptic membranes, which, because of their unusual topology, were designated as "synaptic sombreros." A second type had gap junctions adjacent to active zones consisting of broad, flat, shallow indentations of the plasma membrane. Morphometric analysis indicates that mixed synapses correspond to 3-5% of all synapses on the somata and proximal dendrites, but, because of their subcellular location and morphology, they could represent 30-100% of excitatory synapses. The relative abundance of mixed synapses on several classes of neurons in spinal cords of adult rats suggests that mixed synapses provide important but previously unrecognized pathways for bidirectional communication between neurons in the mammalian central nervous system.