11 resultados para fluorescent lamp model

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have generated transgenic medaka (teleost, Oryzias latipes), which allow us to monitor germ cells by green fluorescent protein (GFP) fluorescence in live specimens. Two medaka strains, himedaka (orange–red variety) and inbred QurtE, were used. The transgenic lines were achieved by microinjection of a construct containing the putative promoter region and 3′ region of the medaka vasa gene (olvas). The intensity of GFP fluorescence increases dramatically in primordial germ cells (PGCs) located in the ventrolateral region of the posterior intestine around stage 25 (the onset of blood circulation). Whole-mount in situ hybridization and monitoring of ectopically located cells by GFP fluorescence suggested that (i) the increase in zygotic olvas expression occurs after PGC specification and (ii) PGCs can maintain their cell characteristics ectopically after stages 20–25. Around the day of hatching, the QurtE strain clearly exhibits sexual dimorphisms in the number of GFP fluorescent germ cells, a finding consistent with the appearance of leucophores, a sex-specific marker of QurtE. The GFP expression persists throughout the later stages in the mature ovary and testis. Thus, these transgenic medaka represent a live vertebrate model to investigate how germ cells migrate to form sexually dimorphic gonads, as well as a potential assay system for environmental substances that may affect gonad development. The use of a transgenic construct as a selective marker to efficiently isolate germ-line-transmitting founders during embryogenesis is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current model for bacterial cell division, FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other proteins such as FtsA. This putative protein complex ultimately generates the division septum. Herein we report that FtsZ and FtsA proteins tagged with green fluorescent protein (GFP) colocalize to division-site ring-like structures in living bacterial cells in a visible space between the segregated nucleoids. Cells with higher levels of FtsZ–GFP or with FtsA–GFP plus excess wild-type FtsZ were inhibited for cell division and often exhibited bright fluorescent spiral tubules that spanned the length of the filamentous cells. This suggests that FtsZ may switch from a septation-competent localized ring to an unlocalized spiral under some conditions and that FtsA can bind to FtsZ in both conformations. FtsZ–GFP also formed nonproductive but localized aggregates at a higher concentration that could represent FtsZ nucleation sites. The general domain structure of FtsZ–GFP resembles that of tubulin, since the C terminus of FtsZ is not required for polymerization but may regulate polymerization state. The N-terminal portion of Rhizobium FtsZ polymerized in Escherichia coli and appeared to copolymerize with E. coli FtsZ, suggesting a degree of interspecies functional conservation. Analysis of several deletions of FtsA–GFP suggests that multiple segments of FtsA are important for its localization to the FtsZ ring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antigen-specific effector T cells are prerequisite to immune protection, but because of the lack of effector cell-specific markers, their generation and differentiation has been difficult to study. We report that effector cells are highly enriched in a T cell subset that can be specifically identified in transgenic (T-GFP) mice expressing green fluorescent protein (GFP) under control of the murine CD4 promoter and proximal enhancer. Consistent with previous studies of these transcriptional control elements, GFP was strongly and specifically expressed in nearly all resting and short-term activated CD4+ and CD8+ T cells. However, when T-GFP mice were challenged with vaccinia virus, allogeneic tumor cells, or staphylococcal enterotoxin A, the cytotoxic and IFN-γ-producing T cells lost GFP expression. Upon T cell receptor (TCR) ligation by αCD3, sorted GFP+ cells fluxed calcium and proliferated vigorously. In contrast, GFP− effector cells showed a diminished calcium flux and did not proliferate. Instead, they underwent apoptosis unless supplied with exogenous IL-2. By reverse transcription–PCR analysis, the GFP− cells up-regulated the pro-apoptotic molecule, Fas-L, and down-regulated gene expression of the proximal TCR signaling molecule, CD3ζ, and c-jun, a component of the AP-1 transcription factor. Thus, differential regulation of TCR signaling may explain the divergent responses of naïve and effector T cells to antigen stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We quantified the amount of amyloid β-peptide (Aβ) immunoreactivity as well as amyloid deposits in a large cohort of transgenic mice overexpressing the V717F human amyloid precursor protein (APPV717F+/− TG mice) with no, one, or two mouse apolipoprotein E (Apoe) alleles at various ages. Remarkably, no amyloid deposits were found in any brain region of APPV717F+/− Apoe−/− TG mice as old as 22 mo of age, whereas age-matched APPV717F +/− Apoe+/− and Apoe+/+ TG mice display abundant amyloid deposition. The amount of Aβ immunoreactivity in the hippocampus was also markedly reduced in an Apoe gene dose-dependent manner (Apoe+/+ > Apoe+/− ≫ Apoe−/−), and no Aβ immunoreactivity was detected in the cerebral cortex of APPV717F+/− Apoe−/− TG mice at any of the time points examined. The absence of apolipoprotein E protein (apoE) dramatically reduced the amount of both Aβ1–40 and Aβ1–42 immunoreactive deposits as well as the resulting astrogliosis and microgliosis normally observed in APPV717F TG mice. ApoE immunoreactivity was detected in a subset of Aβ immunoreactive deposits and in virtually all thioflavine-S-fluorescent amyloid deposits. Because the absence of apoE alters neither the transcription or translation of the APPV717F transgene nor its processing to Aβ peptide(s), we postulate that apoE promotes both the deposition and fibrillization of Aβ, ultimately affecting clearance of protease-resistant Aβ/apoE aggregates. ApoE appears to play an essential role in amyloid deposition in brain, one of the neuropathological hallmarks of Alzheimer's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved mammalian two-hybrid system designed for interaction trap screening is described in this paper. CV-1/EBNA-1 monkey kidney epithelial cells expressing Epstein–Barr virus nuclear antigen 1 (EBNA-1) were stably transfected with a reporter plasmid for GAL4-dependent expression of the green fluorescent protein (GFP). A resulting clone, GB133, expressed GFP strongly when transfected transiently with transcriptional activators fused to GAL4 DNA-binding domain with minimal background GFP expression. GB133 cells maintained plasmids containing the OriP Epstein–Barr virus replication origin that directs replication of plasmids in mammalian cells in the presence of the EBNA-1 protein. GB133 cells transfected stably with a model bait expressed GFP when further transfected transiently with an expression plasmid for a known positive prey. When the bait-expressing GB133 cells were transfected transiently with an OriP-containing expression plasmid for the positive prey together with excess amounts of empty vector, cells that received the positive prey were readily identified by green fluorescence in cell culture and eventually formed green fluorescent microcolonies, because the prey plasmid was maintained by the EBNA-1/Ori-P system. The green fluorescent microcolonies were harvested directly from the culture dishes under a fluorescence microscope, and total DNA was then prepared. Prey-encoding cDNA was recovered by PCR using primers annealing to the vector sequences flanking the insert-cloning site. This system should be useful in mammalian cells for efficient screening of cDNA libraries by two-hybrid interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5′ untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A definite diagnosis of prion diseases such as Creutzfeldt–Jakob disease (CJD) relies on the detection of pathological prion protein (PrPSc). However, no test for PrPSc in cerebrospinal fluid (CSF) has been available thus far. Based on a setup for confocal dual-color fluorescence correlation spectroscopy, a technique suitable for single molecule detection, we developed a highly sensitive detection method for PrPSc. Pathological prion protein aggregates were labeled by specific antibody probes tagged with fluorescent dyes, resulting in intensely fluorescent targets, which were measured by dual-color fluorescence intensity distribution analysis in a confocal scanning setup. In a diagnostic model system, PrPSc aggregates were detected down to a concentration of 2 pM PrPSc, corresponding to an aggregate concentration of approximately 2 fM, which was more than one order of magnitude more sensitive than Western blot analysis. A PrPSc-specific signal could also be detected in a number of CSF samples from patients with CJD but not in control samples, providing the basis for a rapid and specific test for CJD and other prion diseases. Furthermore, this method could be adapted to the sensitive detection of other disease-associated amyloid aggregates such as in Alzheimer's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method for identifying genes encoding proteins with stereospecific intracellular localizations in the fission yeast Schizosaccharomyces pombe. Yeast are transformed with a gene library in which S. pombe genomic sequences are fused to the gene encoding the Aequorea victoria green fluorescent protein (GFP), and intracellular localizations are subsequently identified by rapid fluorescence screening in vivo. In a model application of these methods to the fission yeast nucleus, we have identified several novel genes whose products are found in specific nuclear regions, including chromatin, the nucleolus, and the mitotic spindle, and sequence similarities between some of these genes and previously identified genes encoding nuclear proteins have validated the approach. These methods will be useful in identifying additional components of the S. pombe nucleus, and further extensions of this approach should also be applicable to a more comprehensive identification of the elements of intracellular architecture in fission yeast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear envelope breakdown was investigated during meiotic maturation of starfish oocytes. Fluorescent 70-kDa dextran entry, as monitored by confocal microscopy, consists of two phases, a slow uniform increase and then a massive wave. From quantitative analysis of the first phase of dextran entry, and from imaging of green fluorescent protein chimeras, we conclude that nuclear pore disassembly begins several minutes before nuclear envelope breakdown. The best fit for the second phase of entry is with a spreading disruption of the membrane permeability barrier determined by three-dimensional computer simulations of diffusion. We propose a new model for the mechanism of nuclear envelope breakdown in which disassembly of the nuclear pores leads to a fenestration of the nuclear envelope double membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic, posttranslational cyclization and oxidation of a hexapeptide unit. This permits fusion of the DNA sequence of GFP with that of any protein whose expression or transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. The excited state dynamics of GFP were studied following photo-excitation of each of its two strong absorption bands in the visible using fluorescence upconversion spectroscopy (about 100 fs time resolution). It is shown that excitation of the higher energy feature leads very rapidly to a form of the lower energy species, and that the excited state interconversion rate can be markedly slowed by replacing exchangeable protons with deuterons. This observation and others lead to a model in which the two visible absorption bands correspond to GFP in two ground-state conformations. These conformations can be slowly interconverted in the ground state, but the process is much faster in the excited state. The observed isotope effect suggests that the initial excited state process involves a proton transfer reaction that is followed by additional structural changes. These observations may help to rationalize and motivate mutations that alter the absorption properties and improve the photo stability of GFP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We created a "knockout" embryonic stem cell via targeted disruption of the phosphatidylinositol glycan class A (Pig-a) gene, resulting in loss of expression of cell surface glycosyl phosphatidylinositol-anchored proteins and reproducing the mutant phenotype of the human disease paroxysmal nocturnal hemoglobinuria. Morphogenesis of Pig-a- embryoid bodies (EB) in vitro was grossly aberrant and, unlike EB derived from normal embryonic stem cells, Pig-A EB produced no secondary hematopoietic colonies. Chimeric EB composed of control plus Pig-A- cells, however, appeared normal, and hematopoiesis from knock-out cells was reconstituted. Transfer in situ of glycosyl phosphatidylinositol-anchored proteins from normal to knock-out cells was demonstrated by two-color fluorescent analysis, suggesting a possible mechanism for these functional effects. Hematopoietic cells with mutated PIG-A genes in humans with paroxysmal nocturnal hemoglobinuria may be subject to comparable pathophysiologic processes and amenable to similar therapeutic protein transfer.