3 resultados para flow kinetics

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory signals. Rolling under the hydrodynamic drag forces of blood flow is mediated by the interaction between selectins and their ligands across the leukocyte and endothelial cell surfaces. Here we present force-spectroscopy experiments on single complexes of P-selectin and P-selectin glycoprotein ligand-1 by atomic force microscopy to determine the intrinsic molecular properties of this dynamic adhesion process. By modeling intermolecular and intramolecular forces as well as the adhesion probability in atomic force microscopy experiments we gain information on rupture forces, elasticity, and kinetics of the P-selectin/P-selectin glycoprotein ligand-1 interaction. The complexes are able to withstand forces up to 165 pN and show a chain-like elasticity with a molecular spring constant of 5.3 pN nm−1 and a persistence length of 0.35 nm. The dissociation constant (off-rate) varies over three orders of magnitude from 0.02 s−1 under zero force up to 15 s−1 under external applied forces. Rupture force and lifetime of the complexes are not constant, but directly depend on the applied force per unit time, which is a product of the intrinsic molecular elasticity and the external pulling velocity. The high strength of binding combined with force-dependent rate constants and high molecular elasticity are tailored to support physiological leukocyte rolling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The small all-β protein tendamistat folds and unfolds with two-state kinetics. We determined the volume changes associated with the folding process by performing kinetic and equilibrium measurements at variable pressure between 0.1 and 100 MPa (1 to 1,000 bar). GdmCl-induced equilibrium unfolding transitions reveal that the volume of the native state is increased by 41.4 ± 2.0 cm3/mol relative to the unfolded state. This value is virtually independent of denaturant concentration. The use of a high-pressure stopped-flow instrument enabled us to measure the activation volumes for the refolding (ΔVf0‡) and unfolding reaction (ΔVu0‡) over a broad range of GdmCl concentrations. The volume of the transition state is 60% native-like (ΔVf0‡ = 25.0 ± 1.2 cm3/mol) in the absence of denaturant, indicating partial solvent accessibility of the core residues. The volume of the transition state increases linearly with denaturant concentration and exceeds the volume of the native state above 6 M GdmCl. This result argues for a largely desolvated transition state with packing deficiencies at high denaturant concentrations and shows that the structure of the transition state depends strongly on the experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Is the pathway of protein folding determined by the relative stability of folding intermediates, or by the relative height of the activation barriers leading to these intermediates? This is a fundamental question for resolving the Levinthal paradox, which stated that protein folding by a random search mechanism would require a time too long to be plausible. To answer this question, we have studied the guanidinium chloride (GdmCl)-induced folding/unfolding of staphylococcal nuclease [(SNase, formerly EC 3.1.4.7; now called microbial nuclease or endonuclease, EC 3.1.31.1] by stopped-flow circular dichroism (CD) and differential scanning microcalorimetry (DSC). The data show that while the equilibrium transition is a quasi-two-state process, kinetics in the 2-ms to 500-s time range are triphasic. Data support the sequential mechanism for SNase folding: U3 <--> U2 <--> U1 <--> N0, where U1, U2, and U3 are substates of the unfolded protein and N0 is the native state. Analysis of the relative population of the U1, U2, and U3 species in 2.0 M GdmCl gives delta-G values for the U3 --> U2 reaction of +0.1 kcal/mol and for the U2 --> U1 reaction of -0.49 kcal/mol. The delta-G value for the U1 --> N0 reaction is calculated to be -4.5 kcal/mol from DSC data. The activation energy, enthalpy, and entropy for each kinetic step are also determined. These results allow us to make the following four conclusions. (i) Although the U1, U2, and U3 states are nearly isoenergetic, no random walk occurs among them during the folding. The pathway of folding is unique and sequential. In other words, the relative stability of the folding intermediates does not dictate the folding pathway. Instead, the folding is a descent toward the global free-energy minimum of the native state via the least activation path in the vast energy landscape. Barrier avoidance leads the way, and barrier height limits the rate. Thus, the Levinthal paradox is not applicable to the protein-folding problem. (ii) The main folding reaction (U1 --> N0), in which the peptide chain acquires most of its free energy (via van der Waals' contacts, hydrogen bonding, and electrostatic interactions), is a highly concerted process. These energy-acquiring events take place in a single kinetic phase. (iii) U1 appears to be a compact unfolded species; the rate of conversion of U2 to U1 depends on the viscosity of solution. (iv) All four relaxation times reported here depend on GdmCl concentrations: it is likely that none involve the cis/trans isomerization of prolines. Finally, a mechanism is presented in which formation of sheet-like chain conformations and a hydrophobic condensation event precede the main-chain folding reaction.