10 resultados para flash-photolysis
em National Center for Biotechnology Information - NCBI
Resumo:
Although many proteins essential for regulated neurotransmitter and peptide hormone secretion have been identified, little is understood about their precise roles at specific stages of the multistep pathway of exocytosis. To study the function of CAPS (Ca2+-dependent activator protein for secretion), a protein required for Ca2+-dependent exocytosis of dense-core vesicles, secretory responses in single rat melanotrophs were monitored by patch-clamp membrane capacitance measurements. Flash photolysis of caged Ca2+ elicited biphasic capacitance increases consisting of rapid and slow components with distinct Ca2+ dependencies. A threshold of ≈10 μM Ca2+ was required to trigger the slow component, while the rapid capacitance increase was recorded already at a intracellular Ca2+ activity < 10 μM. Both kinetic membrane capacitance components were abolished by botulinum neurotoxin B or E treatment, suggesting involvement of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent vesicle fusion. The rapid but not the slow component was inhibited by CAPS antibody. These results were further clarified by immunocytochemical studies that revealed that CAPS was present on only a subset of dense-core vesicles. Overall, the results indicate that dense-core vesicle exocytosis in melanotrophs occurs by two parallel pathways. The faster pathway exhibits high sensitivity to Ca2+ and requires the presence of CAPS, which appears to act at a late stage in the secretory pathway.
Resumo:
Astrocytes can release glutamate in a calcium-dependent manner and consequently signal to adjacent neurons. Whether this glutamate release pathway is used during physiological signaling or is recruited only under pathophysiological conditions is not well defined. One reason for this lack of understanding is the limited knowledge about the levels of calcium necessary to stimulate glutamate release from astrocytes and about how they compare with the range of physiological calcium levels in these cells. We used flash photolysis to raise internal calcium in astrocytes, while monitoring astrocytic calcium levels and glutamate, which evoked slow inward currents that were recorded electrophysiologically from single neurons grown on microislands of astrocytes. With this approach, we demonstrate that modest changes of astrocytic calcium, from 84 to 140 nM, evoke substantial glutamatergic currents in neighboring neurons (−391 pA), with a Hill coefficient of 2.1 to 2.7. Because the agonists glutamate, norepinephrine, and dopamine all raise calcium in astrocytes to levels exceeding 1.8 μM, these quantitative studies demonstrate that the astrocytic glutamate release pathway is engaged at physiological levels of internal calcium. Consequently, the calcium-dependent release of glutamate from astrocytes functions within an appropriate range of astrocytic calcium levels to be used as a signaling pathway within the functional nervous system.
Resumo:
Site-specific photocleavage of hen egg lysozyme and bovine serum albumin (BSA) by N-(l-phenylalanine)-4-(1-pyrene)butyramide (Py-Phe) is reported. Py-Phe binds to lysozyme and BSA with binding constants 2.2 ± 0.3 × 105 M−1 and 6.5 ± 0.4 × 107 M−1, respectively. Photocleavage of lysozyme and BSA was achieved with high specificity when a mixture of protein, Py-Phe, and an electron acceptor, cobalt(III) hexammine (CoHA), was irradiated at 344 nm. Quantum yields of photocleavage of lysozyme and BSA were 0.26 and 0.0021, respectively. No protein cleavage was observed in the absence of Py-Phe, CoHA, or light. N-terminal sequencing of the protein fragments indicated a single cleavage site of lysozyme between Trp-108 and Val-109, whereas the cleavage of BSA was found to be between Leu-346 and Arg-347. Laser flash photolysis studies of a mixture of protein, Py-Phe, and CoHA showed a strong transient with absorption centered at ≈460 nm, corresponding to pyrene cation radical. Quenching of the singlet excited state of Py-Phe by CoHA followed by the reaction of the resulting pyrenyl cation radical with the protein backbone may be responsible for the protein cleavage. The high specificity of photocleavage may be valuable in targeting specific sites of proteins with small molecules.
Resumo:
Flash photolysis and pulse radiolysis measurements demonstrate a conformational dependence of electron transfer rates across a 16-mer helical bundle (three-helix metalloprotein) modified with a capping CoIII(bipyridine)3 electron acceptor at the N terminus and a 1-ethyl-1'-ethyl-4,4'- bipyridinium donor at the C terminus. For the CoIII(peptide)3-1-ethyl-1'-ethyl-4,4'-bipyridinium maquettes, the observed transfer is a first order, intramolecular process, independent of peptide concentration or laser pulse energy. In the presence of 6 M urea, the random coil bundle (approximately 0% helicity) has an observed electron transfer rate constant of kobs = 900 +/- 100 s-1. In the presence of 25% trifluoroethanol (TFE), the helicity of the peptide is 80% and the kobs increases to 2000 +/- 200 s-1. Moreover, the increase in the rate constant in TFE is consistent with the observed decrease in donor-acceptor distance in this solvent. Such bifunctional systems provide a class of molecules for testing the effects of conformation on electron transfer in proteins and peptides.
Resumo:
The electrophoretic export of ATP against the import of ADP in mitochondria bridges the intra- versus extramitochondrial ATP potential gap. Here we report that the electrical nature of the ADP/ATP exchange by the mitochondrial ADP/ATP carrier (AAC) can be directly studied by measuring the electrical currents via capacitive coupling of AAC-containing vesicles on a planar lipid membrane. The currents were induced by the rapid liberation of ATP or ADP with UV flash photolysis from caged nucleotides. Six different transport modes of the AAC were studied: heteroexchange with either ADP or ATP inside the vesicles, initiated by photolysis of caged ATP or ADP; homoexchange with ADPex/ADPin or ATPex/ATPin; and caged ADP or ATP with unloaded vesicles. The heteroexchange produced the largest currents with the longest duration in line with the electrical charge difference ATP4- versus ADP3-. Surprisingly, also in the homoexchange and with unloaded vesicles, small currents were measured with shorter duration. In all three modes with caged ATP, a negative charge moved into the vesicles and with caged ADP it moved out of the vesicles. All currents were completely inhibited by a mixture of the inhibitors of the AAC, carboxyatractyloside and hongkrekate, which proves that the currents are exclusively due to AAC function. The observed charge movements in the heteroexchange system agree with the prediction from transport studies in mitochondria and reconstituted vesicles. The unexpected charge movements in the homoexchange or unloaded systems are interpreted to reveal transmembrane rearrangements of charged sites in the AAC when occupied with ADP or ATP. The results also indicate that not only ATP4- but also ADP3- contribute, albeit in opposite direction, to the electrical nature of the ADP/ATP exchange, which is at variance with former conclusions from biochemical transport studies. These measurements open up new avenues of studying the electrical interactions of ADP and ATP with the AAC.
Resumo:
Proton translocation experiments with intact cells of Halobacterium salinarium overproducing sensory rhodopsin I (SRI) revealed transport activity of SRI in a two-photon process. The vectoriality of proton translocation depends on pH, being outwardly directed above, and inwardly directed below, pH 5.7. Activation of the transport cycle requires excitation of the initial dark state of SRI, SRI590, to form the intermediate SRI380. Action spectra identify the photocycle intermediates SRI380 and SRI520 as the two photochemically reactive species in the outwardly directed transport process. As shown by flash photolysis experiments, SRI520 undergoes a so-far unknown photochemical reaction to SRI380 with a half-time of <200 micros. Mutation of SRI residue Asp-76, the residue which is equivalent to the proton acceptor Asp-85 in bacteriorhodopsin, to asparagine leads to inactivation of proton translocation. This demonstrates that the underlying mechanisms of proton transport in both retinal proteins share similar features. However, SRI is to our knowledge the first case where photochemical reactions between two thermally unstable photoproducts of a retinal protein constitute a catalytic ion transport cycle.
Resumo:
Kinetics of CO association with guanylate cyclase [GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2] and dissociation from carboxy guanylate cyclase have been studied at pH 7.5 by flash photolysis, yielding rate constants at 23 degrees C of 1.2 +/- 0.1 x 10(5) M-1.sec-1 and 28 +/- 2 sec-1, respectively. While the CO combination rate constant is the same as for the T state of hemoglobin, the CO dissociation rate constant is much higher than expected for a six-coordinate carboxyheme protein; yet the absorption spectrum is indicative of a six-coordinate heme. The two observations are reconciled by a reaction mechanism in which CO dissociation proceeds via a five-coordinate intermediate. This intermediate is structurally very similar to the five-coordinate nitrosyl heme derivative of guanylate cyclase and is presumably responsible for the observed 4-fold activation of guanylate cyclase by CO. Thus, we provide a model that explains enzyme activities of the nitrosyl and carboxy forms of the enzyme on the basis of a common mechanism.
Resumo:
Rhodopsin is a prototypical G protein-coupled receptor that is activated by photoisomerization of its 11-cis-retinal chromophore. Mutant forms of rhodopsin were prepared in which the carboxylic acid counterion was moved relative to the positively charged chromophore Schiff base. Nanosecond time-resolved laser photolysis measurements of wild-type recombinant rhodopsin and two mutant pigments then were used to determine reaction schemes and spectra of their early photolysis intermediates. These results, together with linear dichroism data, yielded detailed structural information concerning chromophore movements during the first microsecond after photolysis. These chromophore structural changes provide a basis for understanding the relative movement of rhodopsin’s transmembrane helices 3 and 6 required for activation of rhodopsin. Thus, early structural changes following isomerization of retinal are linked to the activation of this G protein-coupled receptor. Such rapid structural changes lie at the heart of the pharmacologically important signal transduction mechanisms in a large variety of receptors, which use extrinsic activators, but are impossible to study in receptors using diffusible agonist ligands.
Resumo:
The Mn K-edge x-ray absorption spectra for the pure S states of the tetranuclear Mn cluster of the oxygen-evolving complex of photosystem II during flash-induced S-state cycling have been determined. The relative S-state populations in samples given 0, 1, 2, 3, 4, or 5 flashes were determined from fitting the flash-induced electron paramagnetic resonance (EPR) multiline signal oscillation pattern to the Kok model. The edge spectra of samples given 0, 1, 2, or 3 flashes were combined with EPR information to calculate the pure S-state edge spectra. The edge positions (defined as the zero-crossing of the second derivatives) are 6550.1, 6551.7, 6553.5, and 6553.8 eV for S0, S1, S2, and S3, respectively. In addition to the shift in edge position, the S0--> S1 and S1--> S2 transitions are accompanied by characteristic changes in the shape of the edge, both indicative of Mn oxidation. The edge position shifts very little (0.3 eV) for the S2--> S3 transition, and the edge shape shows only subtle changes. We conclude that probably no direct Mn oxidation is involved in this transition. The proposed Mn oxidation state assignments are as follows: S0 (II, III, IV, IV) or (III, III, III, IV), S1 (III, III, IV, IV), S2 (III, IV, IV, IV), S3 (III, IV, IV, IV).
Resumo:
Effects of cocaine on the muscle nicotinic acetylcholine receptor were investigated by using a chemical kinetic technique with a microsecond time resolution. This membrane-bound receptor regulates signal transmission between nerve and muscle cells, initiates muscle contraction, and is inhibited by cocaine, an abused drug. The inhibition mechanism is not well understood because of the lack of chemical kinetic techniques with the appropriate (microsecond) time resolution. Such a technique, utilizing laser-pulse photolysis, was recently developed; by using it the following results were obtained. (i) The apparent cocaine dissociation constant of the closed-channel receptor form is approximately 50 microM. High carbamoylcholine concentration and, therefore, increased concentrations of the open-channel receptor form, decrease receptor affinity for cocaine approximately 6-fold. (ii) The rate of the receptor reaction with cocaine is at least approximately 30-fold slower than the channel-opening rate, resulting in a cocaine-induced decrease in the concentration of open receptor channels without a concomitant decrease in the channel-opening or -closing rates. (iii) The channel-closing rate increases approximately 1.5-fold as the cocaine concentration is increased from 20 to 60 microM but then remains constant as the concentration is increased further. The results are consistent with a mechanism in which cocaine first binds rapidly to a regulatory site of the receptor, which can still form transmembrane channels. Subsequently, a slow step (t1/2 approximately 70 ms) leads to a receptor form that cannot form transmembrane channels, and acetylcholine receptor-mediated signal transmission is, therefore, blocked. Implications for the search for therapeutic agents that alleviate cocaine poisoning are mentioned.