2 resultados para fipronil-sulfone

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fipronil is an outstanding new insecticide for crop protection with good selectivity between insects and mammals. The insecticidal action involves blocking the γ-aminobutyric acid-gated chloride channel with much greater sensitivity of this target in insects than in mammals. Fipronil contains a trifluoromethylsulfinyl moiety that is unique among the agrochemicals and therefore presumably important in its outstanding performance. We find that this substituent unexpectedly undergoes a novel and facile photoextrusion reaction on plants upon exposure to sunlight, yielding the corresponding trifluoromethylpyrazole, i.e., the desulfinyl derivative. The persistence of this photoproduct and its high neuroactivity, resulting from blocking the γ-aminobutyric acid-gated chloride channel, suggest that it may be a significant contributor to the effectiveness of fipronil. In addition, desulfinylfipronil is not a metabolite in mammals, so the safety evaluations must take into account not only the parent compound but also this completely new environmental product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium falciparum causes the most severe form of malaria in humans. An important class of drugs in malaria treatment is the sulfone/sulfonamide group, of which sulfadoxine is the most commonly used. The target of sulfadoxine is the enzyme dihydropteroate synthase (DHPS), and sequencing of the DHPS gene has identified amino acid differences that may be involved in the mechanism of resistance to this drug. In this study we have sequenced the DHPS gene in 10 isolates from Thailand and identified a new allele of DHPS that has a previously unidentified amino acid difference. We have expressed eight alleles of P. falciparum PPPK-DHPS in Escherichia coli and purified the functional enzymes to homogeneity. Strikingly, the Ki for sulfadoxine varies by almost three orders of magnitude from 0.14 μM for the DHPS allele from sensitive isolates to 112 μM for an enzyme expressed in a highly resistant isolate. Comparison of the Ki of different sulfonamides and the sulfone dapsone has suggested that the amino acid differences in DHPS would confer cross-resistance to these compounds. These results show that the amino acid differences in the DHPS enzyme of sulfadoxine-resistant isolates of P. falciparum are central to the mechanism of resistance to sulfones and sulfonamides.