10 resultados para fibrado vectorial

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic modification of the vectorial capacity of mosquito vectors of human disease requires promoters capable of driving gene expression with appropriate tissue and stage specificity. We report on the characterization in transgenic Aedes aegypti of two mosquito gut-specific promoters. A 1.4-kb DNA fragment adjacent to the 5′ end of the coding region of the Ae. aegypti carboxypeptidase (AeCP) gene and a corresponding 3.4-kb DNA fragment at the 5′ end of the Anopheles gambiae carboxypeptidase (AgCP) gene were linked to a firefly luciferase reporter gene and introduced into the Ae. aegypti germ line by using Hermes and mariner (Mos1) transposons. Six independent transgenic lines were obtained with the AeCP construct and one with the AgCP construct. Luciferase mRNA and protein were abundantly expressed in the guts of transgenic mosquitoes in four of the six AeCP lines and in the AgCP line. Expression of the reporter gene was gut-specific and reached peak levels at about 24 h post-blood ingestion. The AeCP and AgCP promoters can be used to drive the expression of genes that hinder parasite development in the mosquito gut.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bile secretion involves the structural and functional interplay of hepatocytes and cholangiocytes, the cells lining the intrahepatic bile ducts. Hepatocytes actively secrete bile acids into the canalicular space and cholangiocytes then transport bile acids in a vectorial manner across their apical and basolateral plasma membranes. The initial step in the transepithelial transport of bile acids across rat cholangiocytes is apical uptake by a Na+-dependent bile acid transporter (ASBT). To date, the molecular basis of the obligate efflux mechanism for extrusion of bile acids across the cholangiocyte basolateral membrane remains unknown. We have identified an exon-2 skipped, alternatively spliced form of ASBT, designated t-ASBT, expressed in rat cholangiocytes, ileum, and kidney. Alternative splicing causes a frameshift that produces a 154-aa protein. Antipeptide antibodies detected the ≈19 kDa t-ASBT polypeptide in rat cholangiocytes, ileum, and kidney. The t-ASBT was specifically localized to the basolateral domain of cholangiocytes. Transport studies in Xenopus oocytes revealed that t-ASBT can function as a bile acid efflux protein. Thus, alternative splicing changes the cellular targeting of ASBT, alters its functional properties, and provides a mechanism for rat cholangiocytes and other bile acid-transporting epithelia to extrude bile acids. Our work represents an example in which a single gene appears to encode via alternative splicing both uptake and obligate efflux carriers in a bile acid-transporting epithelial cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell adhesion molecule E-cadherin has been implicated in maintaining the polarized phenotype of epithelial cells and suppression of invasiveness and motility of carcinoma cells. Na,K-ATPase, consisting of an α- and β-subunit, maintains the sodium gradient across the plasma membrane. A functional relationship between E-cadherin and Na,K-ATPase has not previously been described. We present evidence that the Na,K-ATPase plays a crucial role in E-cadherin–mediated development of epithelial polarity, and suppression of invasiveness and motility of carcinoma cells. Moloney sarcoma virus-transformed Madin-Darby canine kidney cells (MSV-MDCK) have highly reduced levels of E-cadherin and β1-subunit of Na,K-ATPase. Forced expression of E-cadherin in MSV-MDCK cells did not reestablish epithelial polarity or inhibit the invasiveness and motility of these cells. In contrast, expression of E-cadherin and Na,K-ATPase β1-subunit induced epithelial polarization, including the formation of tight junctions and desmosomes, abolished invasiveness, and reduced cell motility in MSV-MDCK cells. Our results suggest that E-cadherin–mediated cell-cell adhesion requires the Na,K-ATPase β-subunit's function to induce epithelial polarization and suppress invasiveness and motility of carcinoma cells. Involvement of the β1-subunit of Na,K-ATPase in the polarized phenotype of epithelial cells reveals a novel link between the structural organization and vectorial ion transport function of epithelial cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasma membrane vesicles from red beet (Beta vulgaris L.) storage tissue contain two prominent major intrinsic protein species of 31 and 27 kD (X. Qi, C.Y Tai, B.P. Wasserman [1995] Plant Physiol 108: 387–392). In this study affinity-purified antibodies were used to investigate their localization and biochemical properties. Both plasma membrane intrinsic protein (PMIP) subgroups partitioned identically in sucrose gradients; however, each exhibited distinct properties when probed for multimer formation, and by limited proteolysis. The tendency of each PMIP species to form disulfide-linked aggregates was studied by inclusion of various sulfhydryl agents during tissue homogenization and vesicle isolation. In the absence of dithiothreitol and sulfhydryl reagents, PMIP27 yielded a mixture of monomeric and aggregated species. In contrast, generation of a monomeric species of PMIP31 required the addition of dithiothreitol, iodoacetic acid, or N-ethylmaleimide. Mixed disulfide-linked heterodimers between the PMIP31 and PMIP27 subgroups were not detected. Based on vectorial proteolysis of right-side-out vesicles with trypsin and hydropathy analysis of the predicted amino acid sequence derived from the gene encoding PMIP27, a topological model for a PMIP27 was established. Two exposed tryptic cleavage sites were identified from proteolysis of PMIP27, and each was distinct from the single exposed site previously identified in surface loop C of a PMIP31. Although the PMIP31 and PMIP27 species both contain integral proteins that appear to occur within a single vesicle population, these results demonstrate that each PMIP subgroup responds differently to perturbations of the membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The key enzyme of chlorophyll biosynthesis in higher plants, NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR, EC 1.3.1.33), accumulates in its precursor form (pPORA) in barley. pPORA is bound to the chloroplasts and is able to interact with the enzyme's substrate, Pchlide, at both the cytosolic as well as the stromal side of the plastid envelope. The interaction with intraplastidic Pchlide, formed in ATP-containing chloroplasts upon feeding with -aminolevulinic acid, drives vectorial translocation of pPORA across the plastid envelope membranes. In contrast, exogenously applied Pchlide causes the release of the envelope-bound precursor protein to the cytosol. Both processes compete with each other if intra- and extraplastidic Pchlide are applied simultaneously. A cytosolic heat shock cognate protein of Mr 70,000 present in wheat germ and barley leaf protein extracts appears to prevent the release of the pPORA to the cytosol in vivo, however.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of proton binding to the extracellular and the cytoplasmic surfaces of the purple membrane were measured by laser-induced proton pulses. Purple membranes, selectively labeled by fluorescein at Lys-129 of bacteriorhodopsin, were pulsed by protons released in the aqueous bulk from excited pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) and the reaction of protons with the indicators was measured. Kinetic analysis of the data imply that the two faces of the membrane differ in their buffer capacities and in their rates of interaction with bulk protons. The extracellular surface of the purple membrane contains one anionic proton binding site per protein molecule with pK = 5.1. This site is within a Coulomb cage radius (approximately 15 A) from Lys-129. The cytoplasmic surface of the purple membrane bears 4-5 protonable moieties (pK = 5.1) that, due to close proximity, function as a common proton binding site. The reaction of the proton with this cluster is at a very fast rate (3.10(10) M-1.s-1). The proximity between the elements is sufficiently high that even in 100 mM NaCl they still function as a cluster. Extraction of the chromophore retinal from the protein has a marked effect on the carboxylates of the cytoplasmic surface, and two to three of them assume positions that almost bar their reaction with bulk protons. The protonation dynamics determined at the surface of the purple membrane is of relevance both for the vectorial proton transport mechanism of bacteriorhodopsin and for energy coupling, not only in halobacteria, but also in complex chemiosmotic systems such as mitochondrial and thylakoid membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of permeabilized cell models to study nuclear protein import has led to the identification of cytosolic components of the import machinery, including the NLS receptor, p97, Ran/TC4, and nuclear transport factor 2 (NTF2). These proteins are required to reconstitute docking of transport ligand at the nuclear pore complex and subsequent translocation through the nuclear pore. However, a detailed molecular understanding of how these factors mediate protein import is lacking. Here we describe the results of solution and solid phase binding assays, which demonstrate that the small GTPase Ran/TC4 interacts directly with the cytosolic transport factors p97 and NTF2. By preloading recombinant Ran/TC4 with [gamma-32P]GTP or [3H]GDP, we show that the interactions with p97 and NTF2 are specific for the GTP- and GDP-bound forms, respectively. These data together with previous studies lead us to suggest that the interaction of the GTP-bound form of Ran/TC4 with p97 is linked to an early step in the nuclear protein import pathway and that the association of the GDP-bound form of Ran/TC4 with NTF2 helps define vectorial transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction of genetic elements derived from a viral pathogen's genome may be used to reduce the vectorial capacity of mosquitoes for that virus. A double subgenomic Sindbis virus expression system was utilized to transcribe sequences of LaCrosse (LAC) virus small (S) or medium (M) segment RNA in sense or antisense orientation; wild-type Sindbis and LaCrosse viruses have single-stranded RNA genomes, the former being positive sense and the latter being negative sense. Recombinant viruses were generated and used to infect Aedes albopictus (C6/36) mosquito cells, which were challenged with wild-type LAC virus and then assayed for LAC virus replication. Several recombinant viruses containing portions of the LAC S segment were capable of inducing varying degrees of interference to the challenge virus. Cells infected with TE/3'2J/ANTI-S virus, expressing full-length negative-sense S RNA of LAC virus, yielded 3-6 log10TCID50 (tissue culture 50% infective dose) less LAC virus per ml than did cells infected with a double subgenomic sindbis virus containing no LAC insert. When C6/36 cells infected with TE/3'2J/ANTI-S were challenged with closely related heterologous bunyaviruses, a similar inhibitory effect was seen. Adult Ae. triseriatus mosquitoes infected with TE/3'2J/ANTI-S were also resistant to challenge by LAC virus. Organs that were productively infected by the double subgenomic Sindbis virus expressing the LAC anti-S sequences demonstrated little LAC virus or antigen. These studies indicate that expression of carefully selected antiviral sequences derived from the pathogen's genome may result in efficacious molecular viral interference in mosquito cells and, more importantly, in mosquitoes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Millions of people die every year in the tropical world from diseases transmitted by hematophagous insects. Failure of conventional containment measures emphasizes the need for additional approaches, such as transformation of vector insects with genes that restrict vectorial capacity. The availability of an efficient promoter to drive foreign genes in transgenic insects is a necessary tool to test the feasibility of such approach. Here we characterize the putative promoter region of a black fly midgut carboxypeptidase gene and show that these sequences correctly direct the expression of a beta-glucuronidase reporter in Drosophila melanogaster. By histochemical staining and mRNA analysis, we found that the gene is expressed strongly and gut-specifically in the transgenic Drosophila. This gut-specific black fly carboxypeptidase promoter provides a valuable tool for the study of disease vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been suggested that transepithelial gradients of short-chain fatty acids (SCFAs; the major anions in the colonic lumen) generate pH gradients across the colonic epithelium. Quantitative confocal microscopy was used to study extracellular pH in mouse distal colon with intact epithelial architecture, by superfusing tissue with carboxy SNARF-1 (a pH-sensitive fluorescent dye). Results demonstrate extracellular pH regulation in two separate microdomains surrounding colonic crypts: the crypt lumen and the subepithelial tissue adjacent to crypt colonocytes. Apical superfusion with (i) a poorly metabolized SCFA (isobutyrate), (ii) an avidly metabolized SCFA (n-butyrate), or (iii) a physiologic mixture of acetate/propionate/n-butyrate produced similar results: alkalinization of the crypt lumen and acidification of subepithelial tissue. Effects were (i) dependent on the presence and orientation of a transepithelial SCFA gradient, (ii) not observed with gluconate substitution, and (iii) required activation of sustained vectorial acid/base transport by SCFAs. Results suggest that the crypt lumen functions as a pH microdomain due to slow mixing with bulk superfusates and that crypts contribute significant buffering capacity to the lumen. In conclusion, physiologic SCFA gradients cause polarized extracellular pH regulation because epithelial architecture and vectorial transport synergize to establish regulated microenvironments.