6 resultados para fiber cotton production

em National Center for Biotechnology Information - NCBI


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Alcaligenes eutrophus genes encoding the enzymes, β-ketothiolase (phaA), acetoacetyl-CoA reductase (phaB), and polyhydroxyalkanoate synthase (phaC) catalyze the production of aliphatic polyester poly-d-(−)-3-hydroxybutyrate (PHB) from acetyl-CoA. PHB is a thermoplastic polymer that may modify fiber properties when synthesized in cotton. Endogenous β-ketothiolase activity is present in cotton fibers. Hence cotton was transformed with engineered phaB and phaC genes by particle bombardment, and transgenic plants were selected based on marker gene, β-glucuronidase (GUS), expression. Fibers of 10 transgenic plants expressed phaB gene, while eight plants expressed both phaB and phaC genes. Electron microscopy examination of fibers expressing both genes indicated the presence of electron-lucent granules in the cytoplasm. High pressure liquid chromatography, gas chromatography, and mass spectrometry evidence suggested that the new polymer produced in transgenic fibers is PHB. Sixty-six percent of the PHB in fibers is in the molecular mass range of 0.6 × 106 to 1.8 × 106 Da. The presence of PHB granules in transgenic fibers resulted in measurable changes of thermal properties. The fibers exhibited better insulating characteristics. The rate of heat uptake and cooling was slower in transgenic fibers, resulting in higher heat capacity. These data show that metabolic pathway engineering in cotton may enhance fiber properties by incorporating new traits from other genetic sources. This is an important step toward producing new generation fibers for the textile industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A cDNA encoding annexin was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA was expressed in Escherichia coli, and the resultant recombinant protein was purified. We then investigated some biochemical properties of the recombinant annexin based on the current understanding of plant annexins. An “add-back experiment” was performed to study the effect of the recombinant annexin on β-glucan synthase activity, but no effect was found. However, it was found that the recombinant annexin could display ATPase/GTPase activities. The recombinant annexin showed much higher GTPase than ATPase activity. Mg2+ was essential for these activities, whereas a high concentration of Ca2+ was inhibitory. A photolabeling assay showed that this annexin could bind GTP more specifically than ATP. The GTP-binding site on the annexin was mapped into the carboxyl-terminal fourth repeat of annexin from the photolabeling experiment using domain-deletion mutants of this annexin. Northern-blot analysis showed that the annexin gene was highly expressed in the elongation stages of cotton fiber differentiation, suggesting a role of this annexin in cell elongation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed restriction fragment length polymorphism map was used to determine the chromosomal locations and subgenomic distributions of quantitative trait loci (QTLs) segregating in a cross between cultivars of allotetraploid (AADD) Gossypium hirsutum (“Upland” cotton) and Gossypium barbadense (“Sea Island,” “Pima,” or “Egyptian” cotton) that differ markedly in the quality and quantity of seed epidermal fibers. Most QTLs influencing fiber quality and yield are located on the “D” subgenome, derived from an ancestor that does not produce spinnable fibers. D subgenome QTLs may partly account for the fact that domestication and breeding of tetraploid cottons has resulted in fiber yield and quality levels superior to those achieved by parallel improvement of “A” genome diploid cottons. The merger of two genomes with different evolutionary histories in a common nucleus appears to offer unique avenues for phenotypic response to selection. This may partly compensate for reduction in quantitative variation associated with polyploid formation and be one basis for the prominence of polyploids among extant angiosperms. These findings impel molecular dissection of the roles of divergent subgenomes in quantitative inheritance in many other polyploids and further exploration of both “synthetic” polyploids and exotic diploid genotypes for agriculturally useful variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

H2O2 is a widespread molecule in many biological systems. It is created enzymatically in living cells during various oxidation reactions and by leakage of electrons from the electron transport chains. Depending on the concentration H2O2 can induce cell protective responses, programmed cell death, or necrosis. Here we provide evidence that H2O2 may function as a developmental signal in the differentiation of secondary walls in cotton (Gossypium hirsutum) fibers. Three lines of evidence support this conclusion: (a) the period of H2O2 generation coincided with the onset of secondary wall deposition, (b) inhibition of H2O2 production or scavenging the available H2O2 from the system prevented the wall differentiation process, and (c) exogenous addition of H2O2 prematurely promoted secondary wall formation in young fibers. Furthermore, we provide support for the concept that H2O2 generation could be mediated by the expression of the small GTPase Rac, the accumulation of which was shown previously to be strongly induced during the onset of secondary wall differentiation. In support of Rac's role in the activation of NADPH oxidase and the generation of reactive oxygen species, we transformed soybean (Glycine max) and Arabidopsis cells with mutated Rac genes. Transformation with a dominantly activated cotton Rac13 gene resulted in constitutively higher levels of H2O2, whereas transformation with the antisense and especially with dominant-negative Rac constructs decreased the levels of H2O2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cotton (Gossypium hirsutum L.) fibers are single-celled trichomes that synchronously undergo a phase of rapid cell expansion, then a phase including secondary cell wall deposition, and finally maturation. To determine if there is coordinated regulation of gene expression during fiber expansion, we analyzed the expression of components involved in turgor regulation and a cytoskeletal protein by measuring levels of mRNA and protein accumulation and enzyme activity. Fragments of the genes for the plasma membrane proton-translocating ATPase, vacuole-ATPase, proton-translocating pyrophosphatase (PPase), phosphoenolpyruvate carboxylase, major intrinsic protein, and α-tubulin were amplified by polymerase chain reaction and used as probes in ribonuclease protection assays of RNA from a fiber developmental series, revealing two discrete patterns of mRNA accumulation. Transcripts of all but the PPase accumulated to highest levels during the period of peak expansion (+12–15 d postanthesis [dpa]), then declined with the onset of secondary cell wall synthesis. The PPase was constitutively expressed through fiber development. Activity of the two proton-translocating-ATPases peaked at +15 dpa, whereas PPase activity peaked at +20 dpa, suggesting that all are involved in the process of cell expansion but with varying roles. Patterns of protein accumulation and enzyme activity for some of the proteins examined suggest posttranslational regulation through fiber development.