11 resultados para femoral vein

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To investigate the efficacy of using a rapid plasma d-dimer test as an adjunct to compression ultrasound for diagnosing clinically suspected deep vein thrombosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerosis preferentially occurs in areas of turbulent flow and low fluid shear stress, whereas laminar flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and IL-1 stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. TNF-α and IL-1 regulate gene expression in ECs, in part, by stimulating mitogen-activated protein kinases (MAPK), which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAPK in EC. To test this hypothesis, we determined the effects of flow (shear stress = 12 dynes/cm2) on TNF-α and IL-1-stimulated activity of three MAPK in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK). Flow alone stimulated ERK1/2 and p38 activity but decreased JNK activity compared with static controls. TNF-α or IL-1 alone activated ERK1/2, p38, and JNK maximally at 15 min in HUVEC. Preexposing HUVEC for 10 min to flow inhibited TNF-α and IL-1 activation of JNK by 46% and 49%, respectively, but had no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, which inhibits flow-mediated ERK1/2 activation, prevented flow from inhibiting cytokine activation of JNK. Phorbol 12-myristate 13-acetate, which strongly activates ERK1/2, also inhibited TNF-α activation of JNK. These findings indicate that fluid shear stress inhibits TNF-α-mediated signaling events in HUVEC via the activation of the ERK1/2 signaling pathway. Inhibition of TNF-α signal transduction represents a mechanism by which steady laminar flow may exert atheroprotective effects on the endothelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present evidence that the JAK-STAT signal transduction pathway regulates multiple developmental processes in Drosophila. We screened for second-site mutations that suppress the phenotype of the hyperactive hopTum-1 Jak kinase, and recovered a mutation that meiotically maps to the known chromosomal position of D-Stat, a Drosophila stat gene. This hypomorphic mutation, termed statHJ contains a nucleotide substitution in the first D-Stat intron, resulting in a reduction in the number of correctly processed transcripts. Further, the abnormally processed mRNA encodes a truncated protein that has a dominant negative effect on transcriptional activation by the wild-type cDNA in cell culture. statHJ mutants exhibit patterning defects that include the formation of ectopic wing veins, similar to those seen in mutants of the epidermal growth factor/receptor pathway. Abnormalities in embryonic and adult segmentation and in tracheal development were also observed. The hopTum-1 and statHJ mutations can partially compensate for each other genetically, and Hop overexpression can increase D-Stat transcriptional activity in vitro, indicating that the gene products interact in a common regulatory pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, researchers have speculated that genetic engineering can improve the long-term function of vascular grafts which are prone to atherosclerosis and occlusion. In this study, we demonstrated that an intraoperative gene therapy approach using antisense oligodeoxynucleotide blockage of medial smooth muscle cell proliferation can prevent the accelerated atherosclerosis that is responsible for autologous vein graft failure. Selective blockade of the expression of genes for two cell cycle regulatory proteins, proliferating cell nuclear antigen and cell division cycle 2 kinase, was achieved in the smooth muscle cells of rabbit jugular veins grafted into the carotid arteries. This alteration of gene expression successfully redirected vein graft biology away from neointimal hyperplasia and toward medial hypertrophy, yielding conduits that more closely resembled normal arteries. More importantly, these genetically engineered grafts proved resistant to diet-induced atherosclerosis. These findings establish the feasibility of developing genetically engineered bioprostheses that are resistant to failure and better suited to the long-term treatment of occlusive vascular disease.