2 resultados para feature representation

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational maps are of central importance to a neuronal representation of the outside world. In a map, neighboring neurons respond to similar sensory features. A well studied example is the computational map of interaural time differences (ITDs), which is essential to sound localization in a variety of species and allows resolution of ITDs of the order of 10 μs. Nevertheless, it is unclear how such an orderly representation of temporal features arises. We address this problem by modeling the ontogenetic development of an ITD map in the laminar nucleus of the barn owl. We show how the owl's ITD map can emerge from a combined action of homosynaptic spike-based Hebbian learning and its propagation along the presynaptic axon. In spike-based Hebbian learning, synaptic strengths are modified according to the timing of pre- and postsynaptic action potentials. In unspecific axonal learning, a synapse's modification gives rise to a factor that propagates along the presynaptic axon and affects the properties of synapses at neighboring neurons. Our results indicate that both Hebbian learning and its presynaptic propagation are necessary for map formation in the laminar nucleus, but the latter can be orders of magnitude weaker than the former. We argue that the algorithm is important for the formation of computational maps, when, in particular, time plays a key role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient and reliable classification of visual stimuli requires that their representations reside a low-dimensional and, therefore, computationally manageable feature space. We investigated the ability of the human visual system to derive such representations from the sensory input-a highly nontrivial task, given the million or so dimensions of the visual signal at its entry point to the cortex. In a series of experiments, subjects were presented with sets of parametrically defined shapes; the points in the common high-dimensional parameter space corresponding to the individual shapes formed regular planar (two-dimensional) patterns such as a triangle, a square, etc. We then used multidimensional scaling to arrange the shapes in planar configurations, dictated by their experimentally determined perceived similarities. The resulting configurations closely resembled the original arrangements of the stimuli in the parameter space. This achievement of the human visual system was replicated by a computational model derived from a theory of object representation in the brain, according to which similarities between objects, and not the geometry of each object, need to be faithfully represented.