3 resultados para fat metabolism
em National Center for Biotechnology Information - NCBI
Resumo:
Leptin deficiency results in a complex obesity phenotype comprising both hyperphagia and lowered metabolism. The hyperphagia results, at least in part, from the absence of induction by leptin of melanocyte stimulating hormone (MSH) secretion in the hypothalamus; the MSH normally then binds to melanocortin-4 receptor expressing neurons and inhibits food intake. The basis for the reduced metabolic rate has been unknown. Here we show that leptin administered to leptin-deficient (ob/ob) mice results in a large increase in peripheral MSH levels; further, peripheral administration of an MSH analogue results in a reversal of their abnormally low metabolic rate, in an acceleration of weight loss during a fast, in partial restoration of thermoregulation in a cold challenge, and in inducing serum free fatty acid levels. These results support an important peripheral role for MSH in the integration of metabolism with appetite in response to perceived fat stores indicated by leptin levels.
Resumo:
Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic–euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle–lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver–lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.
Resumo:
Lipoprotein lipase (LPL) is the rate-limiting enzyme for the import of triglyceride-derived fatty acids by muscle, for utilization, and adipose tissue (AT), for storage. Relative ratios of LPL expression in these two tissues have therefore been suggested to determine body mass composition as well as play a role in the initiation and/or development of obesity. To test this, LPL knockout mice were mated to transgenics expressing LPL under the control of a muscle-specific promoter (MCK) to generate induced mutants with either relative (L2-MCK) or absolute AT LPL deficiency (L0-MCK). L0-MCK mice had normal weight gain and body mass composition. However, AT chemical composition indicated that LPL deficiency was compensated for by large increases in endogenous AT fatty acid synthesis. Histological analysis confirmed that such up-regulation of de novo fatty acid synthesis in L0-MCK mice could produce normal amounts of AT as early as 20 h after birth. To assess the role of AT LPL during times of profound weight gain, L0-MCK and L2-MCK genotypes were compared on the obese ob/ob background. ob/ob mice rendered deficient in AT LPL (L0-MCK-ob/ob) also demonstrated increased endogenous fatty acid synthesis but had diminished weight and fat mass. These findings reveal marked alterations in AT metabolism that occur during LPL deficiency and provide strong evidence for a role of AT LPL in one type of genetic obesity.