8 resultados para false positive rates
em National Center for Biotechnology Information - NCBI
Resumo:
Nucleic acid sequence-based amplification (NASBA) has proved to be an ultrasensitive method for HIV-1 diagnosis in plasma even in the primary HIV infection stage. This technique was combined with fluorescence correlation spectroscopy (FCS) which enables online detection of the HIV-1 RNA molecules amplified by NASBA. A fluorescently labeled DNA probe at nanomolar concentration was introduced into the NASBA reaction mixture and hybridizing to a distinct sequence of the amplified RNA molecule. The specific hybridization and extension of this probe during amplification reaction, resulting in an increase of its diffusion time, was monitored online by FCS. As a consequence, after having reached a critical concentration of 0.1–1 nM (threshold for unaided FCS detection), the number of amplified RNA molecules in the further course of reaction could be determined. Evaluation of the hybridization/extension kinetics allowed an estimation of the initial HIV-1 RNA concentration that was present at the beginning of amplification. The value of initial HIV-1 RNA number enables discrimination between positive and false-positive samples (caused for instance by carryover contamination)—this possibility of discrimination is an essential necessity for all diagnostic methods using amplification systems (PCR as well as NASBA). Quantitation of HIV-1 RNA in plasma by combination of NASBA with FCS may also be useful in assessing the efficacy of anti-HIV agents, especially in the early infection stage when standard ELISA antibody tests often display negative results.
Resumo:
Carcinoma of the cervix is one of the most common malignancies. Papanicolaou (Pap) smear tests have reduced mortality by up to 70%. Nevertheless their interpretation is notoriously difficult with high false-negative rates and frequently fatal consequences. We have addressed this problem by using affinity-purified antibodies against human proteins that regulate DNA replication, namely Cdc6 and Mcm5. These antibodies were applied to sections and smears of normal and diseased uterine cervix by using immunoperoxidase or immunofluorescence to detect abnormal precursor malignant cells. Antibodies against Cdc6 and Mcm5 stain abnormal cells in cervical smears and sections with remarkably high specificity and sensitivity. Proliferation markers Ki-67 and proliferating cell nuclear antigen are much less effective. The majority of abnormal precursor malignant cells are stained in both low-grade and high-grade squamous intraepithelial lesions. Immunostaining of cervical smears can be combined with the conventional Pap stain so that all the morphological information from the conventional method is conserved. Thus antibodies against proteins that regulate DNA replication can reduce the high false-negative rate of the Pap smear test and may facilitate mass automated screening.
Resumo:
We present a method for discovering conserved sequence motifs from families of aligned protein sequences. The method has been implemented as a computer program called emotif (http://motif.stanford.edu/emotif). Given an aligned set of protein sequences, emotif generates a set of motifs with a wide range of specificities and sensitivities. emotif also can generate motifs that describe possible subfamilies of a protein superfamily. A disjunction of such motifs often can represent the entire superfamily with high specificity and sensitivity. We have used emotif to generate sets of motifs from all 7,000 protein alignments in the blocks and prints databases. The resulting database, called identify (http://motif.stanford.edu/identify), contains more than 50,000 motifs. For each alignment, the database contains several motifs having a probability of matching a false positive that range from 10−10 to 10−5. Highly specific motifs are well suited for searching entire proteomes, while generating very few false predictions. identify assigns biological functions to 25–30% of all proteins encoded by the Saccharomyces cerevisiae genome and by several bacterial genomes. In particular, identify assigned functions to 172 of proteins of unknown function in the yeast genome.
Resumo:
Precise mapping of DNA methylation patterns in CpG islands has become essential for understanding diverse biological processes such as the regulation of imprinted genes, X chromosome inactivation, and tumor suppressor gene silencing in human cancer. We describe a new method, MSP (methylation-specific PCR), which can rapidly assess the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes. This assay entails initial modification of DNA by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequent amplification with primers specific for methylated versus unmethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and can be performed on DNA extracted from paraffin-embedded samples. MSP eliminates the false positive results inherent to previous PCR-based approaches which relied on differential restriction enzyme cleavage to distinguish methylated from unmethylated DNA. In this study, we demonstrate the use of MSP to identify promoter region hypermethylation changes associated with transcriptional inactivation in four important tumor suppressor genes (p16, p15, E-cadherin, and von Hippel-Lindau) in human cancer.
Resumo:
Evolutionary theory predicts the recent spread of primate immunodeficiency viruses (PIVs) to new human populations to be accompanied by positive selection in response to new host environments and/or by random genetic drift. I assess evidence for positive selection in human and chimpanzee PIVs type I (PIV1s), using ratios of synonymous to nonsynonymous nucleotide change based on branch lengths and outgroup rooting. Ratios are smaller for PIV1s from humans than for PIV1 from a chimpanzee for the pol, gag, and env glycoprotein 120 (gp120) regions, indicating greater effects of positive selection in PIV1s from humans. Parsimony-based relative rate tests for amino acid changes showed significant differences between PIV1s from humans and chimpanzees in 18 of 48 pairwise comparisons, with all 18 showing faster rates of change in PIV1s from humans. This study indicates that in some instances, the recent evolution of human PIV1s follows a speciational pattern, in which increased diversification of taxa is correlated with greater amounts of character change appearing and being maintained through time. This extends the generality of the speciational pattern to a group of organisms (viruses) having the fastest known rates of anagenetic change for nucleotide characters and indicates that comprehensive understanding of PIV1 evolution requires consideration of both anagenetic change within viral lineages and the relative historical success of different viral clades. Phylogenetic analyses show that neither PIV1s infecting humans nor those infecting chimpanzees represent monophyletic groups and suggest multiple host-species shifts for PIV1s.
Resumo:
Individuals with autism spectrum disorder (ASD) have impaired ability to use context, which may manifest as alterations of relatedness within the semantic network. However, impairment in context use may be more difficult to detect in high-functioning adults with ASD. To test context use in this population, we examined the influence of context on memory by using the “false memory” test. In the false memory task, lists of words were presented to high-functioning subjects with ASD and matched controls. Each list consists of words highly related to an index word not on the list. Subjects are then given a recognition test. Positive responses to the index words represent false memories. We found that individuals with ASD are able to discriminate false memory items from true items significantly better than are control subjects. Memory in patients with ASD may be more accurate than in normal individuals under certain conditions. These results also suggest that semantic representations comprise a less distributed network in high-functioning adults with ASD. Furthermore, these results may be related to the unusually high memory capacities found in some individuals with ASD. Research directed at defining the range of tasks performed superiorly by high-functioning individuals with ASD will be important for optimal vocational rehabilitation.
Resumo:
A hierarchy of enzyme-catalyzed positive feedback loops is examined by mathematical and numerical analysis. Four systems are described, from the simplest, in which an enzyme catalyzes its own formation from an inactive precursor, to the most complex, in which two sequential feedback loops act in a cascade. In the latter we also examine the function of a long-range feedback, in which the final enzyme produced in the second loop activates the initial step in the first loop. When the enzymes generated are subject to inhibition or inactivation, all four systems exhibit threshold properties akin to excitable systems like neuron firing. For those that are amenable to mathematical analysis, expressions are derived that relate the excitation threshold to the kinetics of enzyme generation and inhibition and the initial conditions. For the most complex system, it was expedient to employ numerical simulation to demonstrate threshold behavior, and in this case long-range feedback was seen to have two distinct effects. At sufficiently high catalytic rates, this feedback is capable of exciting an otherwise subthreshold system. At lower catalytic rates, where the long-range feedback does not significantly affect the threshold, it nonetheless has a major effect in potentiating the response above the threshold. In particular, oscillatory behavior observed in simulations of sequential feedback loops is abolished when a long-range feedback is present.