9 resultados para falling initial distributions of deuterio-isomers

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helper T cells are triggered by molecular complexes of antigenic peptides and class II proteins of the major histocompatibility complex . The formation of stable complexes between class II major histocompatibility complex proteins and antigenic peptides is often accompanied by the formation of a short-lived complex. In this report, we describe T cell recognition of two distinct complexes, one short-lived and the other long-lived, formed during the binding of an altered myelin basic protein peptide to I-Ak. One myelin basic protein-specific T cell clone is triggered by only the short-lived complex, and another is triggered by only the stable complex. Thus, a single peptide bound to a particular class II molecule can activate different T cells depending on the conditions of the binding reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two variables define the topological state of closed double-stranded DNA: the knot type, K, and ΔLk, the linking number difference from relaxed DNA. The equilibrium distribution of probabilities of these states, P(ΔLk, K), is related to two conditional distributions: P(ΔLk|K), the distribution of ΔLk for a particular K, and P(K|ΔLk) and also to two simple distributions: P(ΔLk), the distribution of ΔLk irrespective of K, and P(K). We explored the relationships between these distributions. P(ΔLk, K), P(ΔLk), and P(K|ΔLk) were calculated from the simulated distributions of P(ΔLk|K) and of P(K). The calculated distributions agreed with previous experimental and theoretical results and greatly advanced on them. Our major focus was on P(K|ΔLk), the distribution of knot types for a particular value of ΔLk, which had not been evaluated previously. We found that unknotted circular DNA is not the most probable state beyond small values of ΔLk. Highly chiral knotted DNA has a lower free energy because it has less torsional deformation. Surprisingly, even at |ΔLk| > 12, only one or two knot types dominate the P(K|ΔLk) distribution despite the huge number of knots of comparable complexity. A large fraction of the knots found belong to the small family of torus knots. The relationship between supercoiling and knotting in vivo is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid refolding dynamics of apomyoglobin are followed by a new temperature-jump fluorescence technique on a 15-ns to 0.5-ms time scale in vitro. The apparatus measures the protein-folding history in a single sweep in standard aqueous buffers. The earliest steps during folding to a compact state are observed and are complete in under 20 micros. Experiments on mutants and consideration of steady-state CD and fluorescence spectra indicate that the observed microsecond phase monitors assembly of an A x (H x G) helix subunit. Measurements at different viscosities indicate diffusive behavior even at low viscosities, in agreement with motions of a solvent-exposed protein during the initial collapse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of inducible nitric oxide synthase (NOS2) is complex and is regulated in part by gene transcription. In this investigation we studied the regulation of NOS2 in a human liver epithelial cell line (AKN-1) which expresses high levels of NOS2 mRNA and protein in response to tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma (cytokine mix, CM). Nuclear run-on analysis revealed that CM transcriptionally activated the human NOS2 gene. To delineate the cytokine-responsive regions of the human NOS2 promoter, we stimulated AKN-1 cells with CM following transfection of NOS2 luciferase constructs. Analysis of the first 3.8 kb upstream of the NOS2 gene demonstrated basal promoter activity but failed to show any cytokine-inducible activity. However, 3- to 5-fold inductions of luciferase activity were seen in constructs extending up to -5.8 and -7.0 kg, and a 10-fold increase was seen upon transfection of a -16 kb construct. Further analysis of various NOS2 luciferase constructs ligated upstream of the thymidine kinase promoter identified three regions containing cytokine-responsive elements in the human NOS2 gene: -3.8 to -5.8, -5.8 to -7.0, and -7.0 to -16 kb. These results are in marked contrast with the murine macrophage NOS2 promoter in which only 1 kb of the proximal 5' flanking region is necessary to confer inducibility to lipopolysaccharide and interferon gamma. These data demonstrate that the human NOS2 gene is transcriptionally regulated by cytokines and identify multiple cytokine-responsive regions in the 5' flanking region of the human NOS2 gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the formation of connections during the development of the nervous system, it is generally accepted that there is an early phase not requiring neural activity and a later activity-dependent phase. The initial processes of axonal pathfinding and target selection are not thought to require neural activity, whereas the later fine-tuning of connections into their final adult patterns does. We report an apparent exception to this rule in which action potential activity seems to be required very early in development for thalamic axons to form appropriate patterns of terminal arborizations with their ultimate target neurons in layer 4 of the cerebral cortex. Blockade of sodium action potentials during the 2-week fetal period when visual thalamic axons initially grow into the primary visual cortex in cats prevents the normally occurring branching of lateral geniculate nucleus axons within layer 4. This observation implies a role for action-potential activity in cerebral cortical development far earlier than previously suspected, weeks before eye-opening and the onset of the well-known process of activity-dependent reorganization of axonal terminal arbors that leads to the formation of ocular dominance columns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multidimensional free energy surface for a small fast folding helical protein is explored based on first-principle calculations. The model represents the 46-residue segment from fragment B of staphylococcal protein A. The relationship between collapse and tertiary structure formation, and the order of collapse and secondary structure formation, are investigated. We find that the initial collapse process gives rise to a transition state with about 30% of the native tertiary structure and 50–70% of the native helix content. We also observe two distinct distributions of native helix in this collapsed state (Rg ≈ 12 Å), one with about 20% of the native helical hydrogen bonds, the other with near 70%. The former corresponds to a local minimum. The barrier from this metastable state to the native state is about 2 kBT. In the latter case, folding is essentially a downhill process involving topological assembly. In addition, the order of formation of secondary structure among the three helices is examined. We observe cooperative formation of the secondary structure in helix I and helix II. Secondary structure in helix III starts to form following the formation of certain secondary structure in both helix I and helix II. Comparisons of our results with those from theory and experiment are made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell adhesion to thrombospondin-1 (TSP-1) correlates with assembly of cell–substratum contact structures that contain fascin microspikes. In this analysis, cell-matrix requirements for assembly of fascin microspikes were examined in detail. In six cell lines, cell spreading on a TSP-1 substratum correlated with expression of fascin protein and formation of fascin microspikes. Microspikes were not formed by H9c2 cells adherent on fibronectin, vitronectin, collagen IV, or platelet factor 4. However, both fascin microspikes and focal contacts were assembled by cells adherent on laminin-1. Using mixed substrata containing different proportions of TSP-1, and fibronectin, fascin microspike formation by H9c2 and C2C12 cells was found to be reduced on substrata containing 25% fibronectin and abolished on substrata containing 75% fibronectin. Adhesion to intermediate mixtures of TSP-1 and fibronectin resulted in coassembly of fascin microspikes and focal contacts, colocalization of fascin with actin stress fiber bundles and altered distributions of β1 integrins, cortical α-actinin, and tropomyosin. In cells adherent on 50% TSP-1:50% fibronectin, GRGDSP peptide treatment decreased focal contact assembly and altered cytoskeletal organization but did not inhibit microspike assembly. Treatment with chondroitin sulfate A or p-nitrophenol β-d-xylopyranoside decreased microspike formation and modified cytoskeletal organization but did not inhibit focal contact formation. In polarized migratory and postmitotic C2C12 cells, fascin microspikes and ruffles were localized at leading edges and TSP matrix deposition was also concentrated in this region. Depletion of matrix TSP by heparin treatment correlated with decreased microspike formation and cell motility. Thus, the balance of adhesive receptors ligated at the cell surface during initial cell–matrix attachment serves to regulate the type of substratum adhesion contact assembled and subsequent cytoskeletal organization. A role for fascin microspikes in cell motile behavior is indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant vacuole is acidified by a complex multimeric enzyme, the vacuole-type H+-ATPase (V-ATPase). The initial association of ATPase subunits on membranes was studied using an in vitro assembly assay. The V-ATPase assembled onto microsomes when V-ATPase subunits were supplied. However, when the A or B subunit or the proteolipid were supplied individually, only the proteolipid associated with membranes. By using poly(A+) RNA depleted in the B subunit and proteolipid subunit mRNA, we demonstrated A subunit association with membranes at substoichiometric amounts of the B subunit or the 16-kD proteolipid. These data suggest that poly(A+) RNA-encoded proteins are required to catalyze the A subunit membrane assembly. Initial events were further studied by in vivo protein labeling. Consistent with a temporal ordering of V-ATPase assembly, membranes contained only the A subunit at early times; at later times both the A and B subunits were found on the membranes. A large-mass ATPase complex was not efficiently formed in the absence of membranes. Together, these data support a model whereby the A subunit is first assembled onto the membrane, followed by the B subunit.