11 resultados para factor-augmented panel regressions
em National Center for Biotechnology Information - NCBI
Resumo:
Interleukin 12 (IL-12)-induced T helper 1 (Th1) development requires Stat4 activation. However, antigen-activated Th1 cells can produce interferon γ (IFN-γ) independently of IL-12 and Stat4 activation. Thus, in differentiated Th1 cells, factors regulated by IL-12 and Stat4 may be involved in IFN-γ production. Using subtractive cloning, we identified ERM, an Ets transcription factor, to be a Th1-specific, IL-12-induced gene. IL-12-induction of ERM occurred in wild-type and Stat1-deficient, but not Stat4-deficient, T cells, suggesting ERM is Stat4-inducible. Retroviral expression of ERM did not restore IFN-γ production in Stat4-deficient T cells, but augmented IFN-γ expression in Stat4-heterozygous T cells. Ets factors frequently regulate transcription via cooperative interactions with other transcription factors, and ERM has been reported to cooperate with c-Jun. However, in the absence of other transcription factors, ERM augmented expression of an IFN-γ reporter by only 2-fold. Thus, determining the requirement for ERM in Th1 development likely will require gene targeting.
Resumo:
Successful gene therapy depends on stable transduction of hematopoietic stem cells. Target cells must cycle to allow integration of Moloney-based retroviral vectors, yet hematopoietic stem cells are quiescent. Cells can be held in quiescence by intracellular cyclin-dependent kinase inhibitors. The cyclin-dependent kinase inhibitor p15INK4B blocks association of cyclin-dependent kinase (CDK)4/cyclin D and p27kip-1 blocks activity of CDK2/cyclin A and CDK2/cyclin E, complexes that are mandatory for cell-cycle progression. Antibody neutralization of β transforming growth factor (TGFβ) in serum-free medium decreased levels of p15INK4B and increased colony formation and retroviral-mediated transduction of primary human CD34+ cells. Although TGFβ neutralization increased colony formation from more primitive, noncycling hematopoietic progenitors, no increase in M-phase-dependent, retroviral-mediated transduction was observed. Transduction of the primitive cells was augmented by culture in the presence of antisense oligonucleotides to p27kip-1 coupled with TGFβ-neutralizing antibodies. The transduced cells engrafted immune-deficient mice with no alteration in human hematopoietic lineage development. We conclude that neutralization of TGFβ, plus reduction in levels of the cyclin-dependent kinase inhibitor p27, allows transduction of primitive and quiescent hematopoietic progenitor populations.
Resumo:
The granulocyte-macrophage colony-stimulating factor (GM-CSF) gene is part of a cytokine gene cluster and is directly linked to a conserved upstream inducible enhancer. Here we examined the in vitro and in vivo functions of the human GM-CSF enhancer and found that it was required for the correctly regulated expression of the GM-CSF gene. An inducible DNase I-hypersensitive site appeared within the enhancer in cell types such as T cells, myeloid cells, and endothelial cells that express GM-CSF, but not in nonexpressing cells. In a panel of transfected cells the human GM-CSF enhancer was activated in a tissue-specific manner in parallel with the endogenous gene. The in vivo function of the enhancer was examined in a transgenic mouse model that also addressed the issue of whether the GM-CSF locus was correctly regulated in isolation from other segments of the cytokine gene cluster. After correction for copy number the mean level of human GM-CSF expression in splenocytes from 11 lines of transgenic mice containing a 10.5-kb human GM-CSF transgene was indistinguishable from mouse GM-CSF expression (99% ± 56% SD). In contrast, a 9.8-kb transgene lacking just the enhancer had a significantly reduced (P = 0.004) and more variable level of activity (29% ± 89% SD). From these studies we conclude that the GM-CSF enhancer is required for the correct copy number-dependent expression of the human GM-CSF gene and that the GM-CSF gene is regulated independently from DNA elements associated with the closely linked IL-3 gene or other members of the cytokine gene cluster.
Resumo:
UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing ICAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response.
Resumo:
Two important cytokines mediating inflammation are tumor necrosis factor α (TNFα) and IL-1β, both of which require conversion to soluble forms by converting enzymes. The importance of TNFα-converting enzyme and IL-1β-converting enzyme in the production of circulating TNFα and IL-1β in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized. In these situations release and/or activation of cytokines may be different from that seen in response to a systemic stimulus, particularly because associations of various cell populations in these foci allows for the exposure of procytokines to the proteolytic enzymes produced by activated neutrophils, neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Cat G). To investigate the possibility of alternative processing of TNFα and/or IL-1β by neutrophil-derived proteinases, immunoreactive TNFα and IL-1β release from lipopolysaccharide-stimulated THP-1 cells was measured in the presence of activated human neutrophils. Under these conditions, TNFα and IL-1β release was augmented 2- to 5-fold. In the presence of a specific inhibitor of NE and PR3, enhanced release of both cytokines was largely abolished; however, in the presence of a NE and Cat G selective inhibitor, secretory leucocyte proteinase inhibitor, reduction of the enhanced release was minimal. This finding suggested that the augmented release was attributable to PR3 but not NE nor Cat G. Use of purified enzymes confirmed this conclusion. These results indicate that there may be alternative pathways for the production of these two proinflammatory cytokines, particularly in the context of local inflammatory processes.
Resumo:
Paxillin acts as an adaptor protein in integrin signaling. We have shown that paxillin exists in a relatively large cytoplasmic pool, including perinuclear areas, in addition to focal complexes formed at the cell periphery and focal adhesions formed underneath the cell. Several ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs; ARFGAPs) have been shown to associate with paxillin. We report here that Git2-short/KIAA0148 exhibits properties of a paxillin-associated ARFGAP and appears to be colocalized with paxillin, primarily at perinuclear areas. A fraction of Git2-short was also localized to actin-rich structures at the cell periphery. Unlike paxillin, however, Git2-short did not accumulate at focal adhesions underneath the cell. Git2-short is a short isoform of Git2, which is highly homologous to p95PKL, another paxillin-binding protein, and showed a weaker binding affinity toward paxillin than that of Git2. The ARFGAP activities of Git2 and Git2-short have been previously demonstrated in vitro, and we provided evidence that at least one ARF isoform, ARF1, is an intracellular substrate for the GAP activity of Git2-short. We also showed that Git2-short could antagonize several known ARF1-mediated phenotypes: overexpression of Git2-short, but not its GAP-inactive mutant, caused the redistribution of Golgi protein β-COP and reduced the amounts of paxillin-containing focal adhesions and actin stress fibers. Perinuclear localization of paxillin, which was sensitive to ARF inactivation, was also affected by Git2-short overexpression. On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression. Therefore, an ARFGAP protein weakly interacting with paxillin, Git2-short, exhibits pleiotropic functions involving the regulation of Golgi organization, actin cytoskeletal organization, and subcellular localization of paxillin, all of which need to be coordinately regulated during integrin-mediated cell adhesion and intracellular signaling.
Resumo:
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in various tumor cell lines, whereas most primary cells seem to be resistant. These observations have raised considerable interest in the use of TRAIL in tumor therapy. Yet little is known about the physiological function of TRAIL. This is particularly the case in the immune system, where TRAIL has been suggested by some to be involved in target cell killing and lymphocyte death. We have developed a panel of mAbs and soluble proteins to address the role of TRAIL in lymphocyte development. These studies demonstrate activation-induced sensitization of thymocytes to TRAIL-mediated apoptosis and expression of the apoptosis-inducing TRAIL receptors. However, with the use of several model systems, our subsequent experiments rule out the possibility that TRAIL plays a major role in antigen-induced deletion of thymocytes. In contrast to thymocytes, there is no up-regulation of TRAIL receptors in peripheral T cells on activation, which remain resistant to TRAIL. Thus, susceptibility to TRAIL-induced apoptosis is controlled differently by central and peripheral T cells.
Resumo:
Acidic and basic fibroblast growth factors (FGFs) share a wide range of diverse biological activities. To date, low levels of FGF have not been correlated with a pathophysiologic state. We report that blood vessels of spontaneously hypertensive rats are shown to be associated with a marked decrement in endothelial basic FGF content. This decrement correlates both with hypertension and with a decrease in the endothelial content of nitric oxide synthase. Restoration of FGF to physiological levels in the vascular wall, either by systemic administration or by in vivo gene transfer, significantly augmented the number of endothelial cells with positive immunostaining for nitric oxide synthase, corrected hypertension, and ameliorated endothelial-dependent responses to vasoconstrictors. These results suggest an important role for FGFs in blood pressure homeostasis and open new avenues for the understanding of the etiology and treatment of hypertension.
Resumo:
The high incidence of neurological disorders in patients afflicted with acquired immunodeficiency syndrome (AIDS) may result from human immunodeficiency virus type 1 (HIV-1) induction of chemotactic signals and cytokines within the brain by virus-encoded gene products. Transforming growth factor beta1 (TGF-beta1) is an immunomodulator and potent chemotactic molecule present at elevated levels in HIV-1-infected patients, and its expression may thus be induced by viral trans-activating proteins such as Tat. In this report, a replication-defective herpes simplex virus (HSV)-1 tat gene transfer vector, dSTat, was used to transiently express HIV-1 Tat in glial cells in culture and following intracerebral inoculation in mouse brain in order to directly determine whether Tat can increase TGF-beta1 mRNA expression. dSTat infection of Vero cells transiently transfected by a panel of HIV-1 long terminal repeat deletion mutants linked to the bacterial chloramphenicol acetyltransferase reporter gene demonstrated that vector-expressed Tat activated the long terminal repeat in a trans-activation response element-dependent fashion independent of the HSV-mediated induction of the HIV-1 enhancer, or NF-kappaB domain. Northern blot analysis of human astrocytic glial U87-MG cells transfected by dSTat vector DNA resulted in a substantial increase in steady-state levels of TGF-beta1 mRNA. Furthermore, intracerebral inoculation of dSTat followed by Northern blot analysis of whole mouse brain RNA revealed an increase in levels of TGF-beta1 mRNA similar to that observed in cultured glial cells transfected by dSTat DNA. These results provided direct in vivo evidence for the involvement of HIV-1 Tat in activation of TGF-beta1 gene expression in brain. Tat-mediated stimulation of TGF-beta1 expression suggests a novel pathway by which HIV-1 may alter the expression of cytokines in the central nervous system, potentially contributing to the development of AIDS-associated neurological disease.
Resumo:
In tuberculosis, Mycobacterium tuberculosis (MTB)-stimulated T-cell responses are depressed transiently, whereas antibody levels are increased. Lymphoproliferative responses of peripheral blood mononuclear cells (PBMCs) from Pakistani tuberculosis (TB) patients to both mycobacterial and candidal antigens were suppressed by approximately 50% when compared to healthy purified protein derivative (PPD)-positive household contacts. Production of interferon gamma (IFN-gamma) in response to PPD also was depressed by 78%. Stimulation with PPD and the 30-kDa alpha antigen of MTB (30-kDa antigen) induced greater secretion of transforming growth factor beta (TGF-beta), but not interleukin 10 (IL-10) or tumor necrosis factor alpha (TNF-alpha), by PBMCs from TB patients compared to healthy contacts. The degree of suppression correlated with the duration of treatment; patients treated for <1 month had significantly lower T-cell blastogenesis and IFN-gamma production and higher levels of TGF-beta than did patients treated for >1 month. Neutralizing antibody to TGF-beta normalized lymphocyte proliferation in response to PPD, partially restored blastogenesis to candidal antigen, and significantly increased PPD-stimulated production of IFN-gamma in TB patients but not in contacts. Neutralizing antibody to IL-10 augmented, but did not normalize, T-cell responses to both PPD and candida in TB patients and candidal antigen in contacts. TGF-beta, produced in response to MTB antigens, therefore plays a prominent role in down-regulating potentially protective host effector mechanisms and looms as an important mediator of immunosuppression in TB.
Resumo:
Testicular germ cell tumors are the most common form of cancer in young adult males. They result from a derangement of primordial germ cells, and they grow out from a noninvasive carcinoma-in-situ precursor. Since carcinoma in situ can readily be cured by low-dose irradiation, there is a great incentive for non- or minimally invasive methods for detection of carcinoma in situ. We have recently shown that human Tera-2 embryonal carcinoma cells, obtained from a nonseminomatous testicular germ cell tumor, show alternative splicing and alternative promoter use of the platelet-derived growth factor alpha-receptor gene, giving rise to a unique 1.5-kb transcript. In this study we have set up a reverse transcriptase-polymerase chain reaction strategy for characterization of the various transcripts for this receptor. Using this technique, we show that a panel of 18 seminomas and II nonseminomatous testicular germ cell tumors all express the 1.5-kb transcript. In addition, a panel of 27 samples of testis parenchyma with established carcinoma in situ were all found to be positive for the 1.5-kb transcript, while parenchyma lacking carcinoma in situ, placenta, and control semen were all negative. These data show that the 1.5-kb platelet-derived growth factor alpha-receptor transcript can be used as a highly selective marker for detection of early stages of human testicular germ cell tumors.