3 resultados para extreme high vacuum (XHV)

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are several classes of homogeneous Fermi systems that are characterized by the topology of the energy spectrum of fermionic quasiparticles: (i) gapless systems with a Fermi surface, (ii) systems with a gap in their spectrum, (iii) gapless systems with topologically stable point nodes (Fermi points), and (iv) gapless systems with topologically unstable lines of nodes (Fermi lines). Superfluid 3He-A and electroweak vacuum belong to the universality class 3. The fermionic quasiparticles (particles) in this class are chiral: they are left-handed or right-handed. The collective bosonic modes of systems of class 3 are the effective gauge and gravitational fields. The great advantage of superfluid 3He-A is that we can perform experiments by using this condensed matter and thereby simulate many phenomena in high energy physics, including axial anomaly, baryoproduction, and magnetogenesis. 3He-A textures induce a nontrivial effective metrics of the space, where the free quasiparticles move along geodesics. With 3He-A one can simulate event horizons, Hawking radiation, rotating vacuum, etc. High-temperature superconductors are believed to belong to class 4. They have gapless fermionic quasiparticles with a “relativistic” spectrum close to gap nodes, which allows application of ideas developed for superfluid 3He-A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microorganisms must sense their environment and rapidly tune their metabolism to ambient conditions to efficiently use available resources. We have identified a gene encoding a response regulator, NblR, that complements a cyanobacterial mutant unable to degrade its light-harvesting complex (phycobilisome), in response to nutrient deprivation. Cells of the nblR mutant (i) have more phycobilisomes than wild-type cells during nutrient-replete growth, (ii) do not degrade phycobilisomes during sulfur, nitrogen, or phosphorus limitation, (iii) cannot properly modulate the phycobilisome level during exposure to high light, and (iv) die rapidly when starved for either sulfur or nitrogen, or when exposed to high light. Apart from regulation of phycobilisome degradation, NblR modulates additional functions critical for cell survival during nutrient-limited and high-light conditions. NblR does not appear to be involved in acclimation responses that occur only during a specific nutrient limitation. In contrast, it controls at least some of the general acclimation responses; those that occur during any of a number of different stress conditions. NblR plays a pivotal role in integrating different environmental signals that link the metabolism of the cell to light harvesting capabilities and the activities of the photosynthetic apparatus; this modulation is critical for cell survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genetic surveys of parthenogenetic vertebrate populations have demonstrated a common pattern of relatively high degrees of clonal variation and the coexistence of numerous clones. In striking contrast, the Phoxinus eos/Phoxinus neogaeus/hybrid gynogen complex of cyprinid fishes exhibits no clonal variation within a northern Minnesota drainage characterized by successional beaver ponds. Gynogens were sampled from three habitats in each of four different pond types in a single drainage in Voyageurs National Park, Minnesota. The abundance of gynogens relative to sexual dace varied with pond type, being least common in deep upland ponds and most common in shallow, collapsed, lowland ponds (13.4% and 48.6%, respectively). Simple-sequence multilocus DNA fingerprinting of 464 individual gynogens detected one, and only one, clone. DNA fingerprints, generated sequentially by using three oligonucleotide probes, (CAC)5, (GACA)4, and the Jeffreys' 33.15 probe, all revealed the same unprecedented lack of variation. The extreme lack of clonal diversity in these gynogens across a range of habitat types does not fit the general pattern of high clonal diversity found within populations of other vertebrate parthenogens.