13 resultados para extinctions
em National Center for Biotechnology Information - NCBI
Resumo:
At least 50 species of birds are represented in 241 bird bones from five late Pleistocene and Holocene archaeological sites on New Ireland (Bismarck Archipelago, Papua New Guinea). The bones include only two of seabirds and none of migrant shorebirds or introduced species. Of the 50 species, at least 12 (petrel, hawk, megapode, quail, four rails, cockatoo, two owls, and crow) are not part of the current avifauna and have not been recorded previously from New Ireland. Larger samples of bones undoubtedly would indicate more extirpated species and refine the chronology of extinction. Humans have lived on New Ireland for ca. 35,000 years, whereas most of the identified bones are 15,000 to 6,000 years old. It is suspected that most or all of New Ireland’s avian extinction was anthropogenic, but this suspicion remains undetermined. Our data show that significant prehistoric losses of birds, which are well documented on Pacific islands more remote than New Ireland, occurred also on large, high, mostly forested islands close to New Guinea.
Resumo:
Mass extinctions have played many evolutionary roles, involving differential survivorship or selectivity of taxa and traits, the disruption or preservation of evolutionary trends and ecosystem organization, and the promotion of taxonomic and morphological diversifications—often along unexpected trajectories—after the destruction or marginalization of once-dominant clades. The fossil record suggests that survivorship during mass extinctions is not strictly random, but it often fails to coincide with factors promoting survival during times of low extinction intensity. Although of very serious concern, present-day extinctions have not yet achieved the intensities seen in the Big Five mass extinctions of the geologic past, which each removed ≥50% of the subset of relatively abundant marine invertebrate genera. The best comparisons for predictive purposes therefore will involve factors such as differential extinction intensities among regions, clades, and functional groups, rules governing postextinction biotic interchanges and evolutionary dynamics, and analyses of the factors that cause taxa and evolutionary trends to continue unabated, to suffer setbacks but resume along the same trajectory, to survive only to fall into a marginal role or disappear (“dead clade walking”), or to undergo a burst of diversification. These issues need to be addressed in a spatially explicit framework, because the fossil record suggests regional differences in postextinction diversification dynamics and biotic interchanges. Postextinction diversifications lag far behind the initial taxonomic and morphological impoverishment and homogenization; they do not simply reoccupy vacated adaptive peaks, but explore opportunities as opened and constrained by intrinsic biotic factors and the ecological and evolutionary context of the radiation.
Resumo:
Although mass extinctions probably account for the disappearance of less than 5% of all extinct species, the evolutionary opportunities they have created have had a disproportionate effect on the history of life. Theoretical considerations and simulations have suggested that the empty niches created by a mass extinction should refill rapidly after extinction ameliorates. Under logistic models, this biotic rebound should be exponential, slowing as the environmental carrying capacity is approached. Empirical studies reveal a more complex dynamic, including positive feedback and an exponential growth phase during recoveries. Far from a model of refilling ecospace, mass extinctions appear to cause a collapse of ecospace, which must be rebuilt during recovery. Other generalities include the absence of a clear correlation between the magnitude of extinction and the pace of recovery or the resulting ecological and evolutionary disruption the presence of a survival interval, with few originations, immediately after an extinction and preceding the recovery phase, and the presence of many lineages that persist through an extinction event only to disappear during the subsequent recovery. Several recoveries include numerous missing lineages, groups that are found before the extinction, then latter in the recovery, but are missing during the initial survival–recovery phase. The limited biogeographic studies of recoveries suggest considerable variability between regions.
Resumo:
In a recent contribution to this journal Ellis and Schramm [Ellis, J. & Schramm, D. N. (1995) Proc. Natl. Acad. Sci. USA 92, 235-238] claim that supernova explosions can cause massive biological extinctions as a result of strongly enhanced stratospheric NOx (NO + NO2) production by accompanying galactic cosmic rays. They suggested that these NOx productions which would last over several centuries and occur once every few hundred million years would result in ozone depletions of about 95%, leading to vastly increased levels of biologically damaging solar ultraviolet radiation. Our detailed model calculations show, however, substantially smaller ozone depletions ranging from at most 60% at high latitudes to below 20% at the equator.
Resumo:
Claims that there will be a massive loss of species as tropical forests are cleared are based on the relationship between habitat area and the number of species. Few studies calibrate extinction with habitat reduction. Critics raise doubts about this calibration, noting that there has been extensive clearing of the eastern North American forest, yet only 4 of its approximately 200 bird species have gone extinct. We analyze the distribution of bird species and the timing and extent of forest loss. The forest losses were not concurrent across the region. Based on the maximum extent of forest losses, our calculations predict fewer extinctions than the number observed. At most, there are 28 species of birds restricted to the region. Only these species would be at risk even if all the forests were cleared. Far from providing comfort to those who argue that the current rapid rate of tropical deforestation might cause fewer extinctions than often claimed, our results suggest that the losses may be worse. In contrast to eastern North America, small regions of tropical forest often hold hundreds of endemic bird species.
Resumo:
Widespread species- and genus-level extinctions of mammals in North America and Europe occurred during the last deglaciation [16,000–9,000 yr B.P. (by 14C)], a period of rapid and often abrupt climatic and vegetational change. These extinctions are variously ascribed to environmental change and overkill by human hunters. By contrast, plant extinctions since the Middle Pleistocene are undocumented, suggesting that plant species have been able to respond to environmental changes of the past several glacial/interglacial cycles by migration. We provide evidence from morphological studies of fossil cones and anatomical studies of fossil needles that a now-extinct species of spruce (Picea critchfieldii sp. nov.) was widespread in eastern North America during the Last Glacial Maximum. P. critchfieldii was dominant in vegetation of the Lower Mississippi Valley, and extended at least as far east as western Georgia. P. critchfieldii disappeared during the last deglaciation, and its extinction is not directly attributable to human activities. Similarly widespread plant species may be at risk of extinction in the face of future climate change.
Resumo:
The Pleistocene was a dynamic period for Holarctic mammal species, complicated by episodes of glaciation, local extinctions, and intercontinental migration. The genetic consequences of these events are difficult to resolve from the study of present-day populations. To provide a direct view of population genetics in the late Pleistocene, we measured mitochondrial DNA sequence variation in seven permafrost-preserved brown bear (Ursus arctos) specimens, dated from 14,000 to 42,000 years ago. Approximately 36,000 years ago, the Beringian brown bear population had a higher genetic diversity than any extant North American population, but by 15,000 years ago genetic diversity appears similar to the modern day. The older, genetically diverse, Beringian population contained sequences from three clades now restricted to local regions within North America, indicating that current phylogeographic patterns may provide misleading data for evolutionary studies and conservation management. The late Pleistocene phylogeographic data also indicate possible colonization routes to areas south of the Cordilleran ice sheet.
Resumo:
Human activities have greatly reduced the amount of the earth's area available to wild species. As the area they have left declines, so will their rates of speciation. This loss of speciation will occur for two reasons: species with larger geographical ranges speciate faster; and loss of area drives up extinction rates, thus reducing the number of species available for speciation. Theory predicts steady states in species diversity, and fossils suggest that these have typified life for most of the past 500 million years. Modern and fossil evidence indicates that, at the scale of the whole earth and its major biogeographical provinces, those steady states respond linearly, or nearly so, to available area. Hence, a loss of x% of area will produce a loss of about x% of species. Local samples of habitats merely echo the diversity available in the whole province of which they are a part. So, conservation tactics that rely on remnant patches to preserve diversity cannot succeed for long. Instead, diversity will decay to a depauperate steady state in two phases. The first will involve deterministic extinctions, reflecting the loss of all areas in which a species can ordinarily sustain its demographics. The second will be stochastic, reflecting accidents brought on by global warming, new diseases, and commingling the species of the separate bio-provinces. A new kind of conservation effort, reconciliation ecology, can avoid this decay. Reconciliation ecology discovers how to modify and diversify anthropogenic habitats so that they harbor a wide variety of species. It develops management techniques that allow humans to share their geographical range with wild species.
Resumo:
Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived “weedy” corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral “bleaching” (the breakdown of coral–algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.
Resumo:
The fossil record of land plants is an obvious source of information on the dynamics of mass extinctions in the geological past. In conjunction with the end-Permian ecological crisis, ≈250 million years ago, palynological data from East Greenland reveal some unanticipated patterns. We document the significant time lag between terrestrial ecosystem collapse and selective extinction among characteristic Late Permian plants. Furthermore, ecological crisis resulted in an initial increase in plant diversity, instead of a decrease. Paradoxically, these floral patterns correspond to a “dead zone” in the end-Permian faunal record, characterized by a paucity of marine invertebrate megafossils. The time-delayed, end-Permian plant extinctions resemble modeled “extinction debt” responses of multispecies metapopulations to progressive habitat destruction.
Resumo:
A 7000-year-long sequence of environmental change during the Holocene has been reconstructed for a central Pacific island (Mangaia, Cook Islands). The research design used geomorphological and palynological methods to reconstruct vegetation history, fire regime, and erosion and depositional rates, whereas archaeological methods were used to determine prehistoric Polynesian land use and resource exploitation. Certain mid-Holocene environmental changes are putatively linked with natural phenomena such as eustatic sea-level rise and periodic El Niño-Southern Oscillation events. However, the most significant changes were initiated between 2500 and 1800 years and were directly or indirectly associated with colonization by seafaring Polynesian peoples. These human-induced effects included major forest clearance, increased erosion of volcanic hillsides and alluvial deposition in valley bottoms, significant increases in charcoal influx, extinctions of endemic terrestrial species, and the introduction of exotic species.
Resumo:
We present a simple mathematical model of biological macroevolution. The model describes an ecology of adapting, interacting species. The environment of any given species is affected by other evolving species; hence, it is not constant in time. The ecology as a whole evolves to a "self-organized critical" state where periods of stasis alternate with avalanches of causally connected evolutionary changes. This characteristic behavior of natural history, known as "punctuated equilibrium," thus finds a theoretical explanation as a self-organized critical phenomenon. The evolutionary behavior of single species is intermittent. Also, large bursts of apparently simultaneous evolutionary activity require no external cause. Extinctions of all sizes, including mass extinctions, may be a simple consequence of ecosystem dynamics. Our results are compared with data from the fossil record.